forked from ankur219/ECG-Arrhythmia-classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
57 lines (29 loc) · 1.33 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
model = Sequential()
model.add(Conv2D(64, (3,3),strides = (1,1), input_shape = IMAGE_SIZE + [3],kernel_initializer='glorot_uniform'))
model.add(keras.layers.ELU())
model.add(BatchNormalization())
model.add(Conv2D(64, (3,3),strides = (1,1),kernel_initializer='glorot_uniform'))
model.add(keras.layers.ELU())
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2), strides= (2,2)))
model.add(Conv2D(128, (3,3),strides = (1,1),kernel_initializer='glorot_uniform'))
model.add(keras.layers.ELU())
model.add(BatchNormalization())
model.add(Conv2D(128, (3,3),strides = (1,1),kernel_initializer='glorot_uniform'))
model.add(keras.layers.ELU())
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2), strides= (2,2)))
model.add(Conv2D(256, (3,3),strides = (1,1),kernel_initializer='glorot_uniform'))
model.add(keras.layers.ELU())
model.add(BatchNormalization())
model.add(Conv2D(256, (3,3),strides = (1,1),kernel_initializer='glorot_uniform'))
model.add(keras.layers.ELU())
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2), strides= (2,2)))
model.add(Flatten())
model.add(Dense(2048))
model.add(keras.layers.ELU())
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(7, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])