forked from milesial/Pytorch-UNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
146 lines (113 loc) · 4.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import sys
import os
from optparse import OptionParser
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
from torch import optim
from eval import eval_net
from unet import UNet
from utils import get_ids, split_ids, split_train_val, get_imgs_and_masks, batch
def train_net(net,
epochs=5,
batch_size=1,
lr=0.1,
val_percent=0.05,
save_cp=True,
gpu=False,
img_scale=0.5):
dir_img = 'data/train/'
dir_mask = 'data/train_masks/'
dir_checkpoint = 'checkpoints/'
ids = get_ids(dir_img)
ids = split_ids(ids)
iddataset = split_train_val(ids, val_percent)
print('''
Starting training:
Epochs: {}
Batch size: {}
Learning rate: {}
Training size: {}
Validation size: {}
Checkpoints: {}
CUDA: {}
'''.format(epochs, batch_size, lr, len(iddataset['train']),
len(iddataset['val']), str(save_cp), str(gpu)))
N_train = len(iddataset['train'])
optimizer = optim.SGD(net.parameters(),
lr=lr,
momentum=0.9,
weight_decay=0.0005)
criterion = nn.BCELoss()
for epoch in range(epochs):
print('Starting epoch {}/{}.'.format(epoch + 1, epochs))
net.train()
# reset the generators
train = get_imgs_and_masks(iddataset['train'], dir_img, dir_mask, img_scale)
val = get_imgs_and_masks(iddataset['val'], dir_img, dir_mask, img_scale)
epoch_loss = 0
for i, b in enumerate(batch(train, batch_size)):
imgs = np.array([i[0] for i in b]).astype(np.float32)
true_masks = np.array([i[1] for i in b])
imgs = torch.from_numpy(imgs)
true_masks = torch.from_numpy(true_masks)
if gpu:
imgs = imgs.cuda()
true_masks = true_masks.cuda()
masks_pred = net(imgs)
masks_probs_flat = masks_pred.view(-1)
true_masks_flat = true_masks.view(-1)
loss = criterion(masks_probs_flat, true_masks_flat)
epoch_loss += loss.item()
print('{0:.4f} --- loss: {1:.6f}'.format(i * batch_size / N_train, loss.item()))
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Epoch finished ! Loss: {}'.format(epoch_loss / i))
if 1:
val_dice = eval_net(net, val, gpu)
print('Validation Dice Coeff: {}'.format(val_dice))
if save_cp:
torch.save(net.state_dict(),
dir_checkpoint + 'CP{}.pth'.format(epoch + 1))
print('Checkpoint {} saved !'.format(epoch + 1))
def get_args():
parser = OptionParser()
parser.add_option('-e', '--epochs', dest='epochs', default=5, type='int',
help='number of epochs')
parser.add_option('-b', '--batch-size', dest='batchsize', default=10,
type='int', help='batch size')
parser.add_option('-l', '--learning-rate', dest='lr', default=0.1,
type='float', help='learning rate')
parser.add_option('-g', '--gpu', action='store_true', dest='gpu',
default=False, help='use cuda')
parser.add_option('-c', '--load', dest='load',
default=False, help='load file model')
parser.add_option('-s', '--scale', dest='scale', type='float',
default=0.5, help='downscaling factor of the images')
(options, args) = parser.parse_args()
return options
if __name__ == '__main__':
args = get_args()
net = UNet(n_channels=3, n_classes=1)
if args.load:
net.load_state_dict(torch.load(args.load))
print('Model loaded from {}'.format(args.load))
if args.gpu:
net.cuda()
# cudnn.benchmark = True # faster convolutions, but more memory
try:
train_net(net=net,
epochs=args.epochs,
batch_size=args.batchsize,
lr=args.lr,
gpu=args.gpu,
img_scale=args.scale)
except KeyboardInterrupt:
torch.save(net.state_dict(), 'INTERRUPTED.pth')
print('Saved interrupt')
try:
sys.exit(0)
except SystemExit:
os._exit(0)