-
Notifications
You must be signed in to change notification settings - Fork 4
/
week-10.tex
461 lines (353 loc) · 15.3 KB
/
week-10.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
\documentclass[pdftex]{beamer}
%\documentclass[notes=show]{beamer}
%\documentclass[xcolor=dvipsnames]{beamer}
\usepackage{amssymb}
\usepackage{latexsym}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage[absolute,overlay]{textpos}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
%\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{tabularx}
\newcolumntype{Y}{>{\small\raggedright\arraybackslash}X}
\usepackage{graphicx}
\usepackage{bigstrut}
\usepackage{bbm}
\usepackage{mathrsfs}
\usepackage{epsfig}
\usepackage{array}
%\usepackage{natbib}
\mode<presentation> {
%\usetheme[left,width=1.7cm]{Berkeley}
%\usetheme{default}
\usetheme{Boadilla}
\usecolortheme[RGB={103,102,204}]{structure}
%\usecolortheme{dove}
\useoutertheme{infolines}
\setbeamercovered{transparent}
}
%\renewcommand{\familydefault}{cmss}
%\renewcommand{\mathrm}{\mathsf}
%\renewcommand{\textrm}{\textsf}
\usefonttheme{serif}
\newcommand{\X}{{\mathbf{X}}}
\newcommand{\x}{{\mathbf{x}}}
\newcommand{\E}{\mathsf{E}}
\newcommand{\V}{\mathsf{Var}}
\DeclareGraphicsExtensions{.jpg,.pdf,.mps,.png}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Neue Kommandos für fette Mathebuchstaben innerhalb von Formeln %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\bom}{\boldmath}
\newcommand{\ubom}{\unboldmath}
\newcommand{\mb}{\mathbf}
\newcommand{\fmalpha}{\mbox{\bom${\alpha}$}} %Fettes alpha
\newcommand{\fmbeta}{\mbox{\bom${\beta}$}} %Fettes beta
\newcommand{\fmgamma}{\mbox{\bom${\gamma}$}} %Fettes gamma
\newcommand{\fmdelta}{\mbox{\bom${\delta}$}} %Fettes delta
\newcommand{\fmepsilon}{\mbox{\bom${\epsilon}$}} %Fettes epsilon
\newcommand{\fmvarepsilon}{\mbox{\bom${\varepsilon}$}} %Fettes varepsilon
\newcommand{\fmzeta}{\mbox{\bom${\zeta}$}} %Fettes zeta
\newcommand{\fmeta}{\mbox{\bom${\eta}$}} %Fettes eta
\newcommand{\fmta}{\mbox{\bom${\theta}$}} %Fettes theta (ta)
\newcommand{\fmvarta}{\mbox{\bom${\vartheta}$}} %Fettes vartheta (ta)
\newcommand{\fmiota}{\mbox{\bom${\iota}$}} %Fettes iota
\newcommand{\fmkappa}{\mbox{\bom${\kappa}$}} %Fettes kappa
\newcommand{\fmla}{\mbox{\bom${\la}$}} %Fettes lambda (la)
\newcommand{\fmmu}{\mbox{\bom${\mu}$}} %Fettes mu
\newcommand{\fmnu}{\mbox{\bom${\nu}$}} %Fettes nu
\newcommand{\fmxi}{\mbox{\bom${\xi}$}} %Fettes xi
\newcommand{\fmo}{\mbox{\bom${\o}$}} %Fettes o
\newcommand{\fmpi}{\mbox{\bom${\pi}$}} %Fettes pi
\newcommand{\fmPi}{\mbox{\bom${\Pi}$}} %Fettes pi
\newcommand{\fmvarpi}{\mbox{\bom${\varpi}$}} %Fettes varpi
\newcommand{\fmrho}{\mbox{\bom${\rho}$}} %Fettes rho
\newcommand{\fmvarrho}{\mbox{\bom${\varrho}$}} %Fettes varrho
\newcommand{\fmsigma}{\mbox{\bom${\sigma}$}} %Fettes sigma
\newcommand{\fmSigma}{\mbox{\bom${\Sigma}$}} %Fettes sigma
\newcommand{\fmvarsigma}{\mbox{\bom${\varsigma}$}} %Fettes varsigma
\newcommand{\fmtau}{\mbox{\bom${\tau}$}} %Fettes tau
\newcommand{\fmupsilon}{\mbox{\bom${\upsilon}$}} %Fettes upsilon
\newcommand{\fmphi}{\mbox{\bom${\phi}$}} %Fettes phi
\newcommand{\fmvarphi}{\mbox{\bom${\varphi}$}} %Fettes varphi
\newcommand{\fmchi}{\mbox{\bom${\chi}$}} %Fettes chi
\newcommand{\fmpsi}{\mbox{\bom${\psi}$}} %Fettes psi
\newcommand{\fmomega}{\mbox{\bom${\omega}$}} %Fettes omega
\newcommand{\fmimath}{\mbox{\bom${\imath}$}} %Fettes imath
\newcommand{\fmOmega}{\mbox{\bom${\Omega}$}} %Fettes Omega
\setbeamercolor{bibliography entry title}{fg=black}
\setbeamercolor{bibliography entry author}{fg=black}
\setbeamercolor{subsection in toc}{fg=structure}
\setbeamercolor{palette primary}{bg=structure, fg=white}
%\setbeamercolor{palette secondary}{bg=structure, fg=black}
%\setbeamercolor{palette tertiary}{bg=structure, fg=black}
\setbeamercolor{caption name}{fg=black} \setbeamersize{text margin
left=.8cm} \setbeamersize{text margin right=1cm}
\hypersetup{linkbordercolor={1 0 0}} \setbeamertemplate{navigation
symbols}{} \setbeamertemplate{headline}[default]
\setbeamertemplate{enumerate items}[default]
\newcounter{transfct}
\newcounter{begbs}
\newcounter{endbs}
\title[Regression Discontinuity Design]{Econometrics 2}
\author[Lychagin \& Mu\c co]{Arieda Mu\c co}
\institute[CEU]{Central European University}
\date{Spring 2020}
\AtBeginSection[] {
\begin{frame}<handout:0>
\frametitle{TOC}
\tableofcontents[currentsection]
\end{frame}
}
\AtBeginSection[] {
\begin{frame}<handout:0>
\frametitle{TOC}
\tableofcontents[currentsection]
\end{frame}
}
\pgfdeclareimage[height=.7cm]{logo}{rgs2}
\logo{\pgfuseimage{logo}}
\begin{document}
\frame{\titlepage}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\frame{ \frametitle{Regression Discontinuity}
Consider a potential outcome model
\begin{equation*}
Y_i= (1-D_i)Y_{0i} +D_i Y_{1i}
\end{equation*}
where in addition to $(Y_i,D_i)$ we observe a variable $z_i$ which defines treatment assignment by a cutoff $z_0$.
\begin{itemize}
\item Cutoff in vote share decides election outcome
\item Minimum test score to pass a test
\item Minimum number of days employed to be eligible for unemployment benefits
\end{itemize}
Idea: use the discontinuity created by this rule to identify the treatment effect
}
\frame{ \frametitle{2 types of designs}
\textbf{1. Sharp Regression Discontinuity}
$D$ is a deterministic function of $z$
\begin{equation*}
D_i =\left\{ \begin{array}{cc}
1 & z_i \geq z_0 \\
0 & z_i < z_0
\end{array}
\right.
\end{equation*}
\bigskip
\textbf{2. Fuzzy Regression Discontinuity}
Probability of receiving treatment does not change from 0 to one at the cutoff, but
\begin{equation*}
\underset{z\uparrow z_0}{lim} P(D_i=1|z_i=z) \neq \underset{z \downarrow z_0}{lim} P(D_i=1|z_i=z)
\end{equation*}
other variables also determine treatment assignment, but incentives to participate change discontinuously at the threshold.
}
\frame{ \frametitle{Sharp regression discontinuity}
\begin{center}
\begin{figure}[t]
\includegraphics[scale=.60]{graphs/imbens_lemieux_fig1.pdf}
\end{figure}
\end{center}
}
\frame{ \frametitle{Fuzzy design}
\begin{center}
\begin{figure}[t]
\includegraphics[scale=.60]{graphs/imbens_lemieux_fig2.pdf}
\end{figure}
\end{center}
}
\frame{ \frametitle{Notes}
Selection on observables:
\begin{equation*}
( Y_{1i}, Y_{0i}) \perp D_i| z_i
\end{equation*}
holds trivially. In the sharp design there is no variation in $D_i$ conditional on $z_i$.
%"matching on a single variable"
\bigskip
But there is \textbf{zero overlap} with respect to $z$.
}
\frame{ \frametitle{Identification Assumptions}
\begin{enumerate}
\item[RD.1] No difference in the outcome for those close to the cutoff in the absence of treatment. $E(Y_{0i}|z_i=z)$ is continuous at $z_0$, $E(Y_{1i}|z_i=z)$ is continuous at $z_0$.
\item[RD.2] No sorting based on anticipated gains from treatment near the cutoff $E(x_{i}|z_i=z)$ is continuous at $z_0$.
\end{enumerate}
%These assumptions have testable implications!
}
\frame{ \frametitle{Identification of the treatment effect}
sharp design
\begin{equation*}
\hat{\rho}_{s}= \underset{z \downarrow z_0}{lim} E(Y_i|z_i=z) -\underset{z\uparrow z_0}{lim} E(Y_i|z_i=z)
\end{equation*}
fuzzy design
\begin{equation*}
\hat{\rho}_{f}= \frac{\underset{z \downarrow z_0}{lim} E(Y_i|z_i=z) -\underset{z\uparrow z_0}{lim} E(Y_i|z_i=z)}
{\underset{z \downarrow z_0}{lim} E(D_i|z_i=z) -\underset{z\uparrow z_0}{lim} E(D_i|z_i=z)}
\end{equation*}
Notes:
\begin{itemize}
\item We identify a \emph{local} treatment effect around the discontinuity
\item Limited external validity, but strong internal validity of the result.
\item The fuzzy RD estimator can be interpreted as an IV estimator (compare to Wald estimator)
\end{itemize}
}
\frame{ \frametitle{Estimation of the treatment effect}
\textbf{1. Graphical analysis}: Important part of any RD analysis!
\begin{itemize}
\item Group the data in bins with similar values of $z_i$ to the left and right of $z=z_0$.
\item Plot mean \emph{outcomes} $Y_i$ in each bin against $z$.
\item Is there a jump in $Y$ at $z=z_0$?
\item Are there jumps in mean outcomes at other values of $z \neq z_0$?
\item First stage: Plot mean values of $D_i$ in each bin against $z$, sharp or fuzzy design?
\item Testable assumptions: Plot mean values of \emph{covariates} $X_i$ in each bin.
\item Distribution of $z$: Plot the number of observations in each bin.
\end{itemize}
}
\frame{ \frametitle{Estimation of the treatment effect}
\textbf{2. Regression analysis }
Local linear regression at the boundary, only use observations with values of $z$ close to the discontinuity
\begin{equation*}
Y_i= \alpha + \rho D_i + \fmbeta \mb{z}_i + \varepsilon_i
\end{equation*}
Include more observations and control for flexible functions in $z$ to the left and right of $z=Z_0$
\begin{equation*}
Y_i= \alpha + \rho D_i + f_1(z_i - z_0) + D_i * f_2(z_i - z_0) + \fmbeta \mb{x}_i + \varepsilon_i
\end{equation*}
\begin{itemize}
\item $f_1$ and $f_2$ are polynomials in $(z-z_0)$
\item $\delta$ measures the jump in $y$ at $z=z_0$
\end{itemize}
}
\frame{ \frametitle{Applications: Sharp Regression Discontinuity}
\begin{itemize}
\item Americans over 21 can drink legally
\item American college presidents have lobbied to return the Minimum Legal Drinking Age (MLDA) at 18
\item Theory (Amethyst Initiative): legal drinking at 18 avoids binge drinking contrasting the view that the age-21 MLDA reduces youth access to alcohol, preventing some harm
\end{itemize}
}
\frame{ \frametitle{}
\begin{center}
\begin{figure}[t]
\includegraphics[scale=.50]{graphs/birthdays_funerals.png}
\end{figure}
\end{center}
}
\frame{ \frametitle{Minimum Drinking Age and Mortality Effects}
\begin{center}
\begin{figure}[t]
\includegraphics[scale=.50]{graphs/death_rate_year.png}
\end{figure}
\end{center}
}
\frame{ \frametitle{Minimum Drinking Age and Mortality Effects}
$D_a$ is a deterministic function of $age$. Age is the running variable. MLDA is a sharp function of age
\begin{equation*}
D_a =\left\{ \begin{array}{cc}
1 & a \geq 21 \\
0 & a < 21
\end{array}
\right.
\end{equation*}
\begin{itemize}
\item Treatment status is a deterministic function of $a$. Once we know $a$, we know $D_a$
\item Treatment status is a discontinuous function of a, because no matter how close a gets to the cutoff, $D_a$ remains unchanged until the cutoff is reached.
\end{itemize}
}
\frame{ \frametitle{Estimation of the treatment effect}
%Local linear regression at the boundary, only use observations with values of close to the discontinuity
\begin{equation*}
M_a= \alpha + \rho D_a + \gamma a + \varepsilon_a
\end{equation*}
\begin{itemize}
\item where $M_a$ is mortality in month $a$ defined as 30 day interval
\item RD tools aren't guaranteed to produce reliable causal estimates.
\begin{itemize}
\item Get as close to the cutoff as possible
\item Model nonlinearities directly as polynomial functions of the running variable on both sides of the discontinuity (no need to be the same degree of polynomial on both sides)
\end{itemize}
\end{itemize}
}
\frame{ \frametitle{Three cases}
\begin{center}
\begin{figure}[t]
\includegraphics[scale=.40]{graphs/RD_three_cases.png}
\end{figure}
$z_i$
\end{center}
}
\frame{ \frametitle{What polynomial degree?}
\begin{itemize}
\item Gelman and Imbens (2018) reccomend polynomials up to a quadratic to avoid the problem of overfitting. Usually, researchers report estimates with various degrees.
\item To make the model with interactions easier to interpret, we center the running variable by subtracting the cutoff
\begin{equation*}
\begin{aligned}
M_a&=& \alpha + \rho D_a+ \gamma_1 (a-21) + \gamma_2 (a-21)^2 +\\
& & \delta_1[ D_a (a-21)] + \delta_2[ D_a (a-21)^2 ] + \varepsilon_a
\end{aligned}
\end{equation*}
%\item treatment effect away from the cutoff is $\rho+\delta_1 (a-21) + \delta_2 (a-21)^2 $
\end{itemize}
}
\frame{ \frametitle{}
\begin{center}
\begin{figure}[t]
\includegraphics[scale=.50]{graphs/death_rate_quadratic.png}
\end{figure}
\end{center}
}
\frame{ \frametitle{Covariate Balance}
\begin{center}
\begin{figure}[t]
\includegraphics[scale=.40]{graphs/deaths_table.png}
\end{figure}
\end{center}
}
\frame{ \frametitle{}
\begin{center}
\begin{figure}[t]
\includegraphics[scale=.50]{graphs/by_death_cause.png}
\end{figure}
\end{center}
}
\frame{ \frametitle{How close to the boundary?}
\begin{itemize}
\item As close as possible
\item Drawback: few observations left. This causes the resulting estimates are likely to be too imprecise to be useful.
\item Solution: Non-parametric RD
\item To make the model with interactions easier to interpret, we center the running variable by subtracting the cutoff
\begin{equation*}
\begin{aligned}
M_a&=& \alpha + \rho D_a+ \gamma a+ \varepsilon_a
\end{aligned}
\end{equation*}
\item in a sample such that: $a_0 -b \leq a \leq a_0 +b $
\item $b $ is the bandwidth which is a function of sampling size
\item Theoretical econometricians have proposed strategies for making such bias-variance trade-offs efficiently. The bandwidth selection algorithm is not completely data-dependent and requires researchers to choose certain parameters.
\end{itemize}
}
\frame{ \frametitle{Local linear nonparametric regression}
\begin{itemize}
\item Kernel regression as a weighted regression restricted to a window (bandwidth)
\item The kernel provides the weights to that regression. A rectangular kernel would give the same result as taking
$E[Y]$ at a given bin on $z$. The triangular kernel gives more importance
to the observations closest to the center.
\begin{equation*}
(\hat{\alpha}, \hat{\rho}) =\underset{\alpha, \rho }{argmin} \sum_{i}^{n} (Y_i - \alpha - \rho (z_i-z_0))^2 K(\frac{z_i-z_0}{h}) \mathbbm{1}(z_i > z_0)
\end{equation*}
\end{itemize}
}
\frame{ \frametitle{RD recommendation}
\begin{itemize}
\item Hahn, Jinyong, Petra Todd, and Wilbert Van der Klaauw. "Identification and estimation of treatment effects with a regression-discontinuity design." Econometrica 69.1 (2001): 201-209.
\item Imbens, Guido W. and Thomas Lemieux (2008) "Regression Discontinuity Designs: A Guide to Practice" Journal of Econometrics, 142, 615-635.
\item Gelman, Andrew, and Guido Imbens. "Why high-order polynomials should not be used in regression discontinuity designs." Journal of Business \& Economic Statistics (2018): 1-10.
\end{itemize}
}
\frame{ \frametitle{Book References}
\begin{itemize}
\item Angrist, Joshua D., and J\"{o}rn-Steffen Pischke. Mostly harmless econometrics: An empiricist's companion. Princeton university press, 2008.
\item Angrist, Joshua D., and J\"{o}rn-Steffen Pischke. Mastering' metrics: The path from cause to effect. Princeton University Press, 2014.
\item Cunningham, Scott. "Causal Inference: The Mixtape."
\end{itemize}
}
\end{document}