-
Notifications
You must be signed in to change notification settings - Fork 4
/
week_2.tex
1010 lines (800 loc) · 30 KB
/
week_2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[pdftex]{beamer}
%\documentclass[notes=show]{beamer}
%\documentclass[xcolor=dvipsnames]{beamer}
\usepackage{amssymb}
\usepackage{latexsym}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage[absolute,overlay]{textpos}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
%\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{tabularx}
\newcolumntype{Y}{>{\small\raggedright\arraybackslash}X}
\usepackage{graphicx}
\usepackage{bigstrut}
\usepackage{bbm}
\usepackage{mathrsfs}
\usepackage{epsfig}
\usepackage{array}
\usepackage{xcolor}
\usepackage{tikz}
\usetikzlibrary{arrows,positioning}
\tikzstyle{arrow} = [thick,->,>=stealth]
\mode<presentation> {
%\usetheme[left,width=1.7cm]{Berkeley}
%\usetheme{default}
\usetheme{Boadilla}
\usecolortheme[RGB={103,102,204}]{structure}
%\usecolortheme{dove}
\useoutertheme{infolines}
\setbeamercovered{transparent}
}
%\renewcommand{\familydefault}{cmss}
%\renewcommand{\mathrm}{\mathsf}
%\renewcommand{\textrm}{\textsf}
\usefonttheme{serif}
\newcommand{\X}{{\mathbf{X}}}
\newcommand{\x}{{\mathbf{x}}}
\newcommand{\E}{\mathsf{E}}
\newcommand{\V}{\mathsf{Var}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Neue Kommandos für fette Mathebuchstaben innerhalb von Formeln %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\bom}{\boldmath}
\newcommand{\ubom}{\unboldmath}
\newcommand{\mb}{\mathbf}
\newcommand{\fmalpha}{\mbox{\bom${\alpha}$}} %Fettes alpha
\newcommand{\fmbeta}{\mbox{\bom${\beta}$}} %Fettes beta
\newcommand{\fmgamma}{\mbox{\bom${\gamma}$}} %Fettes gamma
\newcommand{\fmdelta}{\mbox{\bom${\delta}$}} %Fettes delta
\newcommand{\fmepsilon}{\mbox{\bom${\epsilon}$}} %Fettes epsilon
\newcommand{\fmvarepsilon}{\mbox{\bom${\varepsilon}$}} %Fettes varepsilon
\newcommand{\fmzeta}{\mbox{\bom${\zeta}$}} %Fettes zeta
\newcommand{\fmeta}{\mbox{\bom${\eta}$}} %Fettes eta
\newcommand{\fmta}{\mbox{\bom${\theta}$}} %Fettes theta (ta)
\newcommand{\fmvarta}{\mbox{\bom${\vartheta}$}} %Fettes vartheta (ta)
\newcommand{\fmiota}{\mbox{\bom${\iota}$}} %Fettes iota
\newcommand{\fmkappa}{\mbox{\bom${\kappa}$}} %Fettes kappa
\newcommand{\fmla}{\mbox{\bom${\la}$}} %Fettes lambda (la)
\newcommand{\fmmu}{\mbox{\bom${\mu}$}} %Fettes mu
\newcommand{\fmnu}{\mbox{\bom${\nu}$}} %Fettes nu
\newcommand{\fmxi}{\mbox{\bom${\xi}$}} %Fettes xi
\newcommand{\fmo}{\mbox{\bom${\o}$}} %Fettes o
\newcommand{\fmpi}{\mbox{\bom${\pi}$}} %Fettes pi
\newcommand{\fmvarpi}{\mbox{\bom${\varpi}$}} %Fettes varpi
\newcommand{\fmrho}{\mbox{\bom${\rho}$}} %Fettes rho
\newcommand{\fmvarrho}{\mbox{\bom${\varrho}$}} %Fettes varrho
\newcommand{\fmsigma}{\mbox{\bom${\sigma}$}} %Fettes sigma
\newcommand{\fmvarsigma}{\mbox{\bom${\varsigma}$}} %Fettes varsigma
\newcommand{\fmtau}{\mbox{\bom${\tau}$}} %Fettes tau
\newcommand{\fmupsilon}{\mbox{\bom${\upsilon}$}} %Fettes upsilon
\newcommand{\fmphi}{\mbox{\bom${\phi}$}} %Fettes phi
\newcommand{\fmvarphi}{\mbox{\bom${\varphi}$}} %Fettes varphi
\newcommand{\fmchi}{\mbox{\bom${\chi}$}} %Fettes chi
\newcommand{\fmpsi}{\mbox{\bom${\psi}$}} %Fettes psi
\newcommand{\fmomega}{\mbox{\bom${\omega}$}} %Fettes omega
\newcommand{\fmimath}{\mbox{\bom${\imath}$}} %Fettes imath
\setbeamercolor{bibliography entry title}{fg=black}
\setbeamercolor{bibliography entry author}{fg=black}
\setbeamercolor{subsection in toc}{fg=structure}
\setbeamercolor{palette primary}{bg=structure, fg=white}
%\setbeamercolor{palette secondary}{bg=structure, fg=black}
%\setbeamercolor{palette tertiary}{bg=structure, fg=black}
\setbeamercolor{caption name}{fg=black} \setbeamersize{text margin
left=.8cm} \setbeamersize{text margin right=1cm}
\hypersetup{linkbordercolor={1 0 0}} \setbeamertemplate{navigation
symbols}{} \setbeamertemplate{headline}[default]
\setbeamertemplate{enumerate items}[default]
\newcounter{transfct}
\newcounter{begbs}
\newcounter{endbs}
\title[Linear Regression]{Econometrics 2 (Part 1)}
\author[Lychagin \& Mu\c co]{Sergey Lychagin}
\institute[CEU]{Central European University}
\date{Winter 2020}
\AtBeginSection[] {
\begin{frame}<handout:0>
\frametitle{TOC}
\tableofcontents[currentsection]
\end{frame}
}
%\AtBeginSubsection[] {
% \begin{frame}<beamer>
% \frametitle{Outline}
% \tableofcontents[currentsection,currentsubsection]
% \end{frame}
%}
%\beamerdefaultoverlayspecification{<+->}
\begin{document}
\frame{\titlepage}
\begin{frame}
\frametitle{Linear Regression and What It Estimates}
\begin{itemize}
\item The conditional expectation function (CEF)
\item CEF and regression
\item Regression and causality
\item The conditional independence assumption (CIA)
\item Omitted variables bias
\item Application: effect of computer use on wages
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Statistical Model}
$X_i, Y_i$ ... random variables
$x_i, y_i \;\;\;i=1,...n$ sample of random draws
\begin{itemize}
\item[1. Step] Describe the \emph{statistical} relationship between $X_i$ and $Y_i$
\item[2. Step] \emph{Econometric} interpretation of the relationship, causality
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Conditional Expectation Function}
$Y_i$ dependent variable
$X_i $ vector of covariates $(K \times 1)$
\bigskip
$E\left[Y_i|X_i \right]$ expectation of $Y_i $ holding $X_i$ fixed
\bigskip
$X_i $ random variable
$E\left[Y_i|X_i \right]$ random function
\bigskip
Example: conditional expectation of earnings given the level of schooling
\end{frame}
\frame{ \frametitle{}
\begin{center}
\begin{figure}[t]
\includegraphics[width=1.1\linewidth]{graphs/cef.pdf}
\end{figure}
\end{center}
}
\begin{frame}
\frametitle{CEF decomposition property}
\underline{Theorem}
\[ Y_i= E\left[Y_i|X_i \right] +\epsilon_i
\]
\begin{itemize}
\item[(i)] $\epsilon_i$ is mean independent of $X_i$, $E\left[\epsilon_i|X_i \right] =0$
\item[(ii)] $\epsilon_i$ is uncorrelated with any function of $X_i$
\end{itemize}
\bigskip
The CEF breaks $Y_i$ into a part that is related to $X_i$ and one that is \emph{orthogonal} to $X_i$.
\end{frame}
\begin{frame}
\frametitle{Regression Function}
Best fitting line generated by minimizing the expected square errors
\[ \beta= \underset{b}{argmin}\; E\left[(Y_i - X_i' b )^2 \right]
\]
%\bigskip
where $b $ is a $(K \times 1)$ coefficient vector.
\bigskip
First order condition
\begin{eqnarray*}
&&E\left[X_i (Y_i - X_i' b ) \right] =0 \\
\beta &=& E\left[X_i X_i' \right] ^{-1}E\left[X_i Y_i \right]
\end{eqnarray*}
By construction the \emph{residual} $e_i=Y_i - X_i'\beta$ is uncorrelated with $X_i$
\end{frame}
\begin{frame}
\frametitle{Bivariate regression function}
Best fitting line generated by minimizing the expected square errors
\[ \beta= \underset{b}{argmin}\; E\left[(Y_i - a - bX_i )^2 \right]
\]
%\bigskip
First order condition gives
\begin{eqnarray*}
\beta &=&\frac {Cov(Y_i , X_i)}{Var(X_i)} \\
\alpha &=& E\left[Y_i \right] - \beta E\left[X_i \right]
\end{eqnarray*}
%Estimator
%\begin{eqnarray*}
%\hat{\beta} &=&\frac {\sum(x_i -\bar{x})(y_i -\bar{y})}{\sum(x_i -\bar{x})^2} \\
%\hat{\alpha} &=& \bar{y} - \beta \bar{x}
%\end{eqnarray*}
\end{frame}
\begin{frame}
\frametitle{Multivariate regression function}
\[ Y_i= \beta_1 + \beta_2 x_{2i}+ ... + \beta_K x_{Ki} + e_i \]
Regression Anatomy Formula
\begin{eqnarray*}
\beta_k &=& \frac {Cov(Y_i , \tilde{x}_{ik})}{Var(\tilde{x}_{ik})}
\end{eqnarray*}
where $\tilde{x}_{ik}$ is the residual from a regression of $x_{ki}$ on all other $X$ variables.
Proof
\begin{eqnarray*}
Cov(Y_i , \tilde{x}_{ik})&=& Cov(\beta_1 + ... + \beta_K x_{Ki} + e_i , \tilde{x}_{ik}) \\
&=& Cov(\ \beta_k x_{ki} , \tilde{x}_{ik}) = \beta_k Var(\tilde{x}_{ik})
\end{eqnarray*}
\end{frame}
\begin{frame}
\frametitle{Regression Function and CEF}
\underline{Theorem 1} (linear CEF theorem):
Suppose the CEF is linear, then the regression function is the CEF
\bigskip
\underline{Theorem 2} (regression CEF theorem):
$X_i' \beta$ provides the MMSE (minimum mean square error) linear approximation to $E\left[Y_i|X_i \right]$:
\[ \beta= \underset{b}{argmin}\; E\left\{(E\left[Y_i|X_i \right] - X_i' b )^2 \right\}
\]
Even if the CEF is not linear, regression provides the best linear approximation.
\end{frame}
\frame{ \frametitle{}
\begin{center}
\begin{figure}[t]
\includegraphics[width=1.1\linewidth]{graphs/regression_cef.pdf}
\end{figure}
\end{center}
}
\begin{frame}{Estimation}
But we only observe a sample $\{x_i, y_i\}_{i=1,\dots,n}$, not the whole population. Approximate expectations with means $\Rightarrow$ OLS estimator:
\begin{equation*}
\beta = E\left[X_i X_i' \right] ^{-1}E\left[X_i Y_i \right]
\end{equation*}
turns into
\begin{equation*}
\widehat\beta = \left[\frac{1}{n}\sum_i x_i x_i' \right] ^{-1}\left[\frac{1}{n}\sum_ix_i y_i \right]
\end{equation*}
OLS is well-behaved: it is \emph{consistent} and \emph{asymptotically normal}:
\begin{itemize}
\item $\widehat\beta\to \beta$ if $n\to\infty$
\item $\sqrt{n}(\widehat\beta - \beta)\to N[0, V]$ if $n\to\infty$
\end{itemize}
\end{frame}
\begin{frame}{OLS is consistent, proof}
Substitute $y_i = x_i'\beta + e_i$
\begin{align*}
\widehat\beta = \left[\frac{1}{n}\sum_i x_i x_i' \right] ^{-1}\left[\frac{1}{n}\sum_ix_i y_i\right]
= \beta + \left[\frac{1}{n}\sum_i x_i x_i' \right] ^{-1}\left[\frac{1}{n}\sum_ix_ie_i\right]
\end{align*}
Law of large numbers: $\frac{1}{n}\sum_ix_ie_i\stackrel{p}{\to}E[X_i\epsilon_i]$, $\frac{1}{n}\sum_ix_ix'_i\stackrel{p}{\to}E[X_iX_i']$.
Law of iterated expectations + CEF decomposition property:
\begin{equation*}
E[X_i\epsilon_i] = E[E[X_i\epsilon_i|X_i]] = E[X_iE[\epsilon_i|X_i]]=E[X_i\cdot 0] = 0.
\end{equation*}
Continuous mapping theorem: if $f(A_n, B_n)$ is continuous in $(A_n,B_n)$, $A_n\stackrel{p}{\to}a$, $B_n\stackrel{p}{\to}b$, then $f(A_n, B_n)\stackrel{p}{\to}f(a,b)$.
\bigskip
Therefore, $\left[\frac{1}{n}\sum_i x_i x_i' \right] ^{-1}\left[\frac{1}{n}\sum_ix_ie_i\right]\to 0$.
\end{frame}
\begin{frame}{OLS is asymptotically normal, proof}
How does $\widehat\beta$ behave around its limit?
\begin{align*}
\sqrt{n}(\widehat\beta - \beta) = \left[\frac{1}{n}\sum_i x_i x_i' \right] ^{-1}\left[\sqrt{n}\frac{1}{n}\sum_ix_ie_i\right]
\end{align*}
Central limit theorem: $\sqrt{n}\frac{1}{n}\sum_ix_ie_i\stackrel{d}{\to}N[0,Var(X_i\epsilon_i)]$.
Slutsky's theorem: Let $A_n\stackrel{p}{\to}a$ and $B_n\stackrel{d}{\to}B$. Then, $A_n + B_n \stackrel{d}{\to}a + B$ and $A_nB_n \stackrel{d}{\to}aB$.
\bigskip
This implies
\begin{align*}
\sqrt{n}&(\widehat\beta - \beta) \stackrel{d}{\to} N[0, V],\\
&\text{where $V = E[X_iX_i']^{-1}Var(X_i\epsilon_i)E[X_iX_i']^{-1}$}
\end{align*}
We can use this result to test hypotheses about $\beta$, find standard errors, etc.
\end{frame}
%%\end{document}
%
%\begin{frame}
%\frametitle{Saturated Models}
%\begin{itemize}
%\item Regression models with discrete explanatory variables, where the model includes a separate parameter for all possible values taken on by the explanatory variables.
%\end{itemize}
% Example 1:
%\[\begin{array}{cl}
% y_{i} &\text{hourly wages} \\
% s_{i} & \text{schooling, } s_{i}=0,1,...,\tau
% \end{array}
%\]
%\begin{itemize}
%\item Saturated regression
%\begin{eqnarray*}
% y_{i} &=& \alpha+\beta_{1}d_{1 i}+...+\beta_{\tau}d_{\tau i}+\epsilon_{i} \\
% d_{ij} &=& 1\left[s_{i}=j\right]
%\end{eqnarray*}
%\end{itemize}
%\end{frame}
%
%
%
%\begin{frame}
%\frametitle{Saturated Models}
%\begin{itemize}
%\item Dummy variables are indicating each schooling level
%\item $\beta_{j}$ j-th level of schooling effect
%
%\[\begin{array}{cl}
% \beta_{j}&= E\left[Y_{i}|s_{i}=j\right]-E\left[Y_{i}|s_{i}=0\right]\\
% \alpha&= E\left[Y_{i}|s_{i}=0\right] \text{, } s_{i}=0 \text{ (reference group)}
% \end{array}
%\]
%
%\item One parameter for any possible $j$
%\item Saturated models perfectly fit the CEF
%
%(CEF is linear function of the set of dummy variables)
%\end{itemize}
%\end{frame}
%
%
%
%\begin{frame}
%\frametitle{Saturated Models}
%
%Example 2:
%
%\begin{itemize}
%\item Two explanatory variables: College graduate and Sex
%
%\[
%\begin{array}{cl}
% y_{i}=\alpha+\beta_{1}coll+\beta_{2}fem+\beta_{3}coll \times female+ \epsilon_{i}
% \end{array}
%\]
%
%
%\item $\beta_{1}$ and $\beta_{2}$ main effects; $\beta_{3}$ interaction term.
%
%\item Other Parametrizations:
%\[
%\begin{array}{cl}
% y_{i}=\tilde{\beta_{1}}male_{\_}coll+\tilde{\beta_{2}}male_{\_}nocoll+\tilde{\beta_{3}}female_{\_}coll\\
% +\tilde{\beta_{4}} female_{\_}nocoll
% \end{array}
%\]
%
%
%\item CEF has four possible values: $x_{1i}$ college and $x_{2i}$ female
%
%\[
%\begin{array}{cl}
%E\left[Y_{i}|x_{1i}=0, x_{2i}=0\right]= & \alpha\\
%E\left[Y_{i}|x_{1i}=1, x_{2i}=0\right]= & \alpha+\beta_{1}\\
%E\left[Y_{i}|x_{1i}=0, x_{2i}=1\right]= & \alpha+\beta_{2}\\
%E\left[Y_{i}|x_{1i}=1, x_{2i}=1\right]= & \alpha+\beta_{1}+\beta_{2}+\beta_{3}
% \end{array}
%\]
%\end{itemize}
%
%\end{frame}
%
%
%\begin{frame}
%\frametitle{Saturated Models}
%Example 3:
%
%\begin{itemize}
% \item Multivalued schooling and Sex
% \[
% \begin{array}{cl}
% y_{i}= \alpha+\sum_{j=1}^{\tau} \beta_{j} d_{ij}+ \gamma x_{2i}+\sum_{j=1}^{\tau} \delta_{j} \left( d_{ij}\times x_{2i} \right)+\epsilon_{i}
% \end{array}
% \]
% \item CEF has $\left(\tau+1\right)\times 2$ values
% \item Saturated Model exactly fits CEF
% \item Increasingly restrictive model: omitting some interactions\\
% e.g: Return to schooling is same for men and women
% \item But often models do not make sense! e.g:
%\begin{eqnarray*}
%y_{i}= \alpha+ x_{2i}+ \sum \delta_{j}\left(d_{ji}\times x_{2i}\right)+ \epsilon_{i}
%\end{eqnarray*}
% different returns to schooling levels \emph{only} for women
%\end{itemize}
%\end{frame}
%
\begin{frame}
\frametitle{Causality}
\begin {itemize}
\item Interpretation of CEF, causal vs non-causal:
\begin{itemize}
\item Non-causal: What is the average difference in earnings between people with $s+1$ and $s$ years of schooling?
\item Causal: What would people earn, on average, if we give them 1 year of schooling holding \emph{all} other characteristics fixed?
\end{itemize}
\item Regression causal $\Leftrightarrow$ CEF causal
\item Causal Effect: difference in average \emph{potential outcome}
\item The CEF is causal if it describes differences in the average potential outcomes for a fixed reference group
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Conditional Independence Assumption (CIA)}
Idea:
\begin{itemize}
\item \emph{selection on observables}
\item Causal variable is independent of potential outcome conditional on observable variables $X$ (ability, family, etc.)
\item Intuitively, for all individuals with the same $X$, assignment to treatment is as good as random.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Potential outcome framework}
\begin{eqnarray*}
c_i && \text{College} \\
Y_i &=& \left\{ \begin{array}{cc}
Y_{1i} & \text{if}\;\; c_i=1 \\
Y_{0i} & \text{otherwise}\;\;
\end{array} \right.\\
X_i&& \text{observable controls: family income, age, etc.}
\end{eqnarray*}
\begin{itemize}
\item Causal Effect $Y_{1i}-Y_{0i}$
\item We want to estimate average $Y_{1i}-Y_{0i}$ for some group
\item e.g. $E\left[Y_{1i}-Y_{0i}| c_{i}=1\right ]$ average causal effect for those who went to college.
\item Remember:
\begin{eqnarray*}
E\left[Y_{i}|c_{i}=1\right]-E\left[Y_{i}|c_{i}=0\right]&=&E\left[Y_{1i}-Y_{0i}|c_{i}=1\right]\\
&+&\underset{\text{selection bias}}{\underbrace{E\left[Y_{0i}|c_{i}=1\right]-E\left[Y_{0i}|c_{i}=0\right]}}
\end{eqnarray*}
\end{itemize}
\end {frame}
\begin{frame}
\frametitle{CIA}
The conditional independence assumption asserts that conditional on observable variables $X_{i}$ selection bias disappears:
\begin{eqnarray*}
\left\{Y_{0i}, Y_{1i}\right\} \amalg c_{i}|X_{i}
\end{eqnarray*}
\begin{eqnarray*}
\underbrace{E(Y_i|X_{i}, c_{i}=1)-E(Y_i|X_{i},c_{i}=0)}_{\text{observed difference |X}}=\underbrace{E(Y_{1i}-Y_{0i}|X_{i})}_{\text{difference in pot outcome |X}}
\end{eqnarray*}
Agents can select into treatment, but only based on their $X_i$. There is no selection on unobservables associated with $(Y_{0i}, Y_{1i})$.
\end{frame}
\begin{frame}
\frametitle{Multivalued Case}
Multivalued causal variable $s_i$: level of schooling
\bigskip
Potential earnings for individual \emph{i} with \emph{s} years of schooling
\begin{eqnarray*}
Y_{s_i}= f_{i}\left(s\right)
\end{eqnarray*}
Conditional independence assumption:
\[ Y_{s_i}\amalg s_{i}| X_{i} \;\;\;\text{for all} \;\; s
\]
$s_i$ is \emph{as good as randomly assigned} conditional on $X_i$
Causal interpretation:
\begin{eqnarray*}
E\left[Y_{i}|X_{i}, s_{i}=s\right]-E\left[Y_{i}|X_{i}, s_{i}=s-1\right]= E\left[f_{i}\left(s\right)-f_{i}\left(s-1\right)|X_{i}\right]
\end{eqnarray*}
\end{frame}
%\end{document}
\begin{frame}
\frametitle{Causality}
\begin{itemize}
\item In the potential outcome framework we get a causal effect for every value of $X_i$
\item Average over $X_i$ using iterated expectations
\begin{eqnarray*}
E\left\{E \left[Y_{i}|X_{i}, s_{i}=12 \right]-E \left[Y_{i}|X_{i}, s_{i}=11\right]\right\}\\
=E\left\{E\left[f_{i}(12) -f_{i}(11)|X_{i}\right]\right\}=E\left[f_{i}\left(12\right)-f_{i}\left(11\right)\right]
\end{eqnarray*}
\item We also get a separate causal effect for each pair of levels of $s_i$, e.g. $(11,12), (12,13), ....$
\item Use regression to \emph{summarize} the effects
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Regression}
\begin{itemize}
\item Assumption: $f_{i}\left(s\right)$ is linear in $s$ and the same for all $i$
\item We estimate a weighted average of individual specific $f_{i}\left(s\right)-f_{i}\left(s-1\right)$
\bigskip
\item Causal Model:
\[\begin{array}{cl}
f_{i}\left(s\right)= \alpha+\rho s +\eta_{i}
\end{array}
\]
linear same relationship for everybody.
\item $\eta_{i}$ error component: unobserved factors determining potential earnings
\item Plug in observed values
\[\begin{array}{cl}
Y_{i}= \alpha+\rho s_i +\eta_{i}
\end{array}
\]
\item Problem: $s_{i}$ may be correlated with potential outcomes $f_{i}\left(s\right)$ via $\eta_{i}$.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Conditional Independence}
Suppose CIA holds given $X_{i}$ and the CEF of $\eta_i$ is linear in $X_i$. Then,
\[\begin{array}{cl}
\eta_{i} =X_{i}^{'}\gamma +v_{i}
\end{array}
\]
where $\gamma$ is a vector of population regression coefficients
\[E\left[\eta_{i}|X_{i}\right]= X_i^{'}\gamma \]
important: the residual $v_{i}$ is uncorrelated with $X_{i}$.
\begin{eqnarray*}
E\left[f_{i}\left(s\right)|X_{i},s_{i}\right] =E\left[f_{i}\left(s\right)|X_{i}\right]
&=& \alpha+\rho s_i+ E\left[\eta_{i}|X_{i}\right]\\
&=&\alpha+\rho s_i+ X_{i}^{'}\gamma\\
\end{eqnarray*}
We get the linear causal model:
\begin{eqnarray*}
Y_{i}=\alpha+\rho s_{i}+ X_{i}^{'}\gamma+ v_{i}
\end{eqnarray*}
\end{frame}
\begin{frame}
\frametitle{Regression}
Linear causal model:
\begin{eqnarray*}
Y_{i}=\alpha+\rho s_{i}+ X_{i}^{'}\gamma+ v_{i}
\end{eqnarray*}
\begin{itemize}
\item $v_{i}$ is not correlated with $s_{i}$, or $X_{i}$. $\rho$ represents causal effect.\\
\item Key assumption: the observable variables $X_{i}$ are the only reason that $\eta_{i}$, or $s_{i}$ are correlated (or $f_{i}\left(s\right)$, and $s_{i}$)
\item Note: $\gamma$ is not causal in general!
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Omitted Variable Bias}
OVB formula describes relationship between regression models with different sets of control variables.
\begin{itemize}
\item Short Regression:
\begin{eqnarray*}
Y_{i}=\tilde{\alpha}+\tilde{\rho} s_{i}+ \eta_{i}
\end{eqnarray*}
\item Long Regression:
\begin{eqnarray*}
Y_{i}=\alpha+\rho s_{i}+ A_{i}\gamma+e_{i}
\end{eqnarray*}
where $A_{i}$ represents ability, family background.
\item If CIA applies given $A_{i}$ then $\rho$ is the coefficient of the linear causal model.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Omitted Variables Bias Formula}
\begin{eqnarray*}
\widehat{\tilde{\rho}}=\frac{Cov\left(Y_{i}, s_{i}\right)}{Var\left(s_{i}\right)}=\rho+\gamma^{'}\delta_{As}
\end{eqnarray*}
where $\delta_{As}$ vector of coefficients from regressions of $A_{i}$ on $s_{i}$
\bigskip
coef from short regression = coef from long regression \emph{plus} effect of omitted variables $*$ regression coef of omitted on included variables
\begin{eqnarray*}
\frac{Cov\left(Y_{i}, s_{i}\right)}{Var\left(s_{i}\right)} &=& \frac{Cov\left(\alpha+\rho s_{i}+ A_{i}^{'}\gamma+e_{i}, s_{i}\right)}{Var\left(s_{i}\right)}\\
&=&\frac{\rho Var\left(s_{i}\right)+\gamma Cov\left(A_{i}, s_{i}\right)}{Var\left(s_{i}\right)}\\
&=& \rho + \gamma\frac{Cov \left(A_{i}, s_{i}\right)}{Var\left(s_{i}\right)}\\
\end{eqnarray*}
\end{frame}
\begin{frame}
\frametitle{Interpretation}
\begin{itemize}
\item $\delta_{As}=0$, if $A_{i}$ and $s_{i}$ are uncorrelated
\item Consequences of omitting $A_{i}$\\
\end{itemize}
Sign of bias
\begin{center}
\begin{tabular}{ l| c r }
\hline
& $Cov(A_{i},s_{i}) >0$&$Cov(A_{i},s_{i}) <0 $\\ \hline
$\gamma >0$ & \color{red}{positive} & \color{red}{negative} \\
$\gamma<0$ & \color{red}{negative} & \color{red}{positive} \\ \hline
\end{tabular}
\end{center}
\end{frame}
\frame{ \frametitle{}
\begin{center}
\begin{figure}[t]
\includegraphics[width=0.9\linewidth]{graphs/ap_321.pdf}
\end{figure}
\end{center}
}
\begin{frame}{An (almost) hypothetical case for discussion}
\begin{itemize}
\item The government of Zubrowka suspects that international university rankings (THE, QS, etc) do not reflect true qualities of domestic universities.
\item The following study is commissioned:
\begin{itemize}
\item A random sample of college graduates working in Zubrowka are surveyed for their wages and last college attended
\item The data is used to estimate
\begin{equation*}
\ln wage_i = \sum_c\alpha_cD_{ci} + \epsilon_i
\end{equation*}
where $D_{ci}=1$ if person $i$ graduated from college $c$.
\item Colleges $c=1,\dots,C$ are ranked according to $\alpha_c$.
\end{itemize}
\item In this ranking, universities based in Zubrowka are quite competitive: the University of Lutz is ranked between MIT and Oxford.
\end{itemize}
What do you think about this research design? Do you believe the results? Would you approach this task differently?
\end{frame}
\begin{frame}{Bad Controls}
\begin{itemize}
\item Control for covariates increases likelihood for a causal interpretation of the main relationship. Should we include any controls?
\item Caution:
\begin{itemize}
\item Bad controls-variables that might themselves be outcomes in the ``thought'' experiment.\\
\end{itemize}
\item Example:
\begin{itemize}
\item Randomly assign college degree (causal effect of mean earnings) \\
\item Occupation correlated with earnings and education.\\
\end{itemize}
\item Should we control for occupation? (white collar job)
\end{itemize}
\end{frame}
\begin{frame}{Bad Controls: more formally}
We relate earnings to the college education dummy. Control for occupation: use the white collar workers only ($W_i = 1$).
\begin{equation*}
Y_i = \alpha + \rho C_i + \epsilon_i, \quad\text{for all $i$ such that $W_i=1$}
\end{equation*}
Let's apply the potential outcome framework. What is the DGP?
\begin{enumerate}
\item Each agent is born with $(Y_{0i}, Y_{1i}, W_{0i}, W_{1i})$ -- wage and occupation for college/no-college state of the world.
\item Treatment is random (just for the sake of argument!)
\item If $C_i = 1$, then $Y_i=Y_{1i}$, $W_i=W_{1i}$ and vice versa.
\end{enumerate}
Key issue: occupation is an outcome. Selecting sample based on $W_i$ --- ``endogenous sample selection''.
\end{frame}
\begin{frame}
Interpret $\rho$ in the potential outcome framework:
\begin{align*}
\rho &= E[Y_i|C_i=1, W_i=1] - E[Y_i|C_i=0, W_i=1]\\
&= E[Y_{1i}|C_i=1, W_{1i}=1] - E[Y_{0i}|C_i=0, W_{0i}=1]\\
&= E[Y_{1i} - Y_{0i}|C_i=1, W_{1i}=1] \\
&\phantom{=} + E[Y_{0i}|C_i=1, W_{1i}=1] - E[Y_{0i}|C_i=0, W_{0i}=1]\\
&= \underbrace{E[Y_{1i} - Y_{0i}| W_{1i}=1]}_\text{effect for the ``white collar after college'' population} \\
&\phantom{=} + \underbrace{E[Y_{0i}|W_{1i}=1] - E[Y_{0i}| W_{0i}=1]}_\text{selection bias}
\end{align*}
Signing selection bias: need to know more on how agents decide on $W_i$. Casual intuition -- likely negative:
\begin{itemize}
\item $W_{0i}=1$ -- Mark Zuckerberg and Bill Gates
\item $W_{1i}=1$ -- median college graduate.
\end{itemize}
Note how the potential outcome model made the discussion tractable.
\end{frame}
\begin{frame}
\frametitle{Application: Returns to Computer Use}
\begin{itemize}
\item Alan B. Krueger, ``How Computers Have Changed the Wage Structure: Evidence from Microdata 1984 - 1989", QJE 1993
\item John E. DiNardo and Jorn-Steffen Pischke, ``The Returns to Computer Use Revisited: Have Pencils Changed the Wage Structure Too?", QJE 2004
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Returns to Computer Use: Motivation}
Facts:
\begin{itemize}
\item Returns to education rising over time.
\item Potential explanation: Skill Biased Technological Change
\item Empirical evidence: Returns to computer use
\end{itemize}
Seminal study Krueger (1993)
\begin{itemize}
\item Cross sectional data on wages, computer on the job, CPS 1984, 1989
\item Causal effect of computer use on wages plus 15-20\% increase
\end{itemize}
Problem:
\begin{itemize}
\item Is there any unobservable characteristic $X$ correlated to computer use?
So that all individuals with this characteristic would earn higher wages anyway?
\end{itemize}
\end{frame}
\begin{frame}{What's behind the data?}
\begin{center}
\begin{tikzpicture}[node distance=1cm, auto,]
\node(ability) {Ability};
\node[right= of ability](skill) {Skill};
\node[right= of skill](firm) {Employer};
\node[right= of firm](computer) {Computer};
\node[below=0.5cm of firm](wage){Wage};
\draw[arrow] (ability) -> (skill);
\draw[arrow] (skill) -> (firm);
\draw[arrow] (firm) -> (computer);
\draw[arrow] (ability) to[out=35, in=145](computer);
\draw[arrow] (ability) to[out=25, in=155](firm);
\draw[arrow] (skill) to[out=35, in=155](computer);
\draw[arrow] (ability) -> (wage);
\draw[arrow] (skill) -> (wage);
\draw[arrow] (firm) -> (wage);
\draw[arrow, red] (computer) -> (wage);
\end{tikzpicture}
\end{center}
\end{frame}
\frame{ \frametitle{}
\begin{center}
\begin{figure}[t]
\includegraphics[width=0.7\linewidth]{graphs/kru_table1.pdf}
\end{figure}
\end{center}
}
\frame{ \frametitle{}
\begin{center}
\begin{figure}[t]
\includegraphics[width=0.7\linewidth]{graphs/kru_table2.pdf}
\end{figure}
\end{center}
}
\begin{frame}
\frametitle{Robustness Checks}
\begin{itemize}
\item Coefficient gets smaller when other variables added
\item Computer use at home and computer use at work.
\item Narrow occupations: Secretaries $16\%$ of comp. users in 1984, and $77\%$ in 1989.
\item Test Scores, Parental background from High school and beyond survey.
\end{itemize}
\end{frame}
\frame{ \frametitle{}
\begin{center}
\begin{figure}[t]
\includegraphics[width=0.9\linewidth]{graphs/kru_table3.pdf}
\end{figure}
\end{center}
}
\frame{ \frametitle{}
\begin{center}
\begin{figure}[t]
\includegraphics[width=0.9\linewidth]{graphs/kru_table4.pdf}
\end{figure}
\end{center}
}
\frame{ \frametitle{}
\begin{center}
\begin{figure}[t]
\includegraphics[width=0.8\linewidth]{graphs/kru_table5.pdf}
\end{figure}
\end{center}
}
\frame{ \frametitle{}
\begin{center}
\begin{figure}[t]
\includegraphics[width=0.8\linewidth]{graphs/kru_table7.pdf}
\end{figure}
\end{center}
}
\begin{frame}
\frametitle{Returns to Computer Use Revisited}
DiNardo and Pischke (2004):
\begin{itemize}
\item German data, also cross section, but includes multitude of workplace tools i.e: office tools, hand tools etc.
\item Qualification and Career Survey: 1985/86, 1991/92
\item Check comparability of Germany vs. US
\item Are the coefficients similar? External validity.
\item What is the impact of other workplace tools on wages?
\end{itemize}
\end{frame}
\frame{ \frametitle{}
\begin{center}
\begin{figure}[t]
\includegraphics[width=0.6\linewidth]{graphs/pisc_table1.pdf}
\end{figure}
\end{center}
}
\frame{ \frametitle{}
\begin{center}
\begin{figure}[t]
\includegraphics[width=1.0\linewidth]{graphs/pisc_table2.pdf}
\end{figure}
\end{center}
}
\begin{frame}
\frametitle{Omitted Variable Bias}
\begin{itemize}
\item Table III
\begin{itemize}
\item Seperate regressions for each tool
\end{itemize}
\begin{eqnarray*}
y_{i} &=& \beta_{0}+ \beta_{1}tool+\beta_{2}educ+...+u
\end{eqnarray*}
\item Table III-b
\begin{itemize}
\item Enter tools together to check for correlation in use
\end{itemize}
\begin{eqnarray*}
y_{i} &=& \beta_{0}+ \beta_{1}comp+\beta_{2}calc+\beta_{3}telep+...+u
\end{eqnarray*}
\end{itemize}
\end{frame}
\frame{ \frametitle{}
\begin{center}
\begin{figure}[t]
\includegraphics[width=1.0\linewidth]{graphs/pisc_table3.pdf}
\end{figure}
\end{center}
}
\frame{ \frametitle{}
\begin{center}
\begin{figure}[t]
\includegraphics[width=1\linewidth]{graphs/pisc_table3b.pdf}
\end{figure}
\end{center}
}
\begin{frame}
\frametitle{Selection Problems}
\begin{itemize}
\item What would be the ideal experiment?
\item Randomly assign computers to workers?