-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolocalize_nexrad_l3.py
213 lines (167 loc) · 7.56 KB
/
colocalize_nexrad_l3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import shutup
shutup.please()
import os
import fire
import tarfile
import numpy as np
np.seterr(all="ignore")
from datetime import datetime, timedelta
from functools import lru_cache
import matplotlib
matplotlib.use('agg')
from metpy.io import Level3File
import pyproj
WGS84 = pyproj.Geod(ellps='WGS84')
from utils.misc import log_print
from utils.requests import download_files
from utils.sentinel1 import get_iw_latlon
from utils.closest_data import get_closest_nexrad_station
from utils.projection import save_reprojection, reproject, generate_gif
from utils.nexrad_l3 import read_melting_layer
from check_args import check_args
#shutil.rmtree('.temp', ignore_errors=True)
os.makedirs('.temp', exist_ok=True)
os.makedirs('outputs', exist_ok=True)
# 'DPR': 'Digital Instantaneous Precipitation Rate'
# 'NYQ': 'Base Reflectivity Data Array'
# 'NXQ': 'Base Reflectivity Data Array',
# 'NHI': 'Hail Index'
# 'NZM': 'Melting Layer'
# 'NXH': 'Digital Hydrometeor Classification'
# 'HHC': 'Hybrid Hydrometeor Classification'
@lru_cache(maxsize=2 ** 16)
def cached_command(command):
return os.popen(command).readlines()
def get_urls(channel, date):
urls = []
prefix = f"{date.year}/{date.month:02}/{date.day:02}/{channel}"
lines = cached_command('gsutil -q ls -l gs://gcp-public-data-nexrad-l3/' + prefix)
for line in lines:
line = line.replace('\n', '')
if line.endswith('.tar.gz') or line.endswith('.Z'):
urls.append(line.split()[-1])
return urls
def get_bucket_urls(channel, iw_datetime, max_timedelta, time_step):
time_steps = range(-max_timedelta, max_timedelta + 1, time_step)
dates = [iw_datetime + timedelta(minutes=x) for x in time_steps]
urls = {channel: {}}
for date in dates:
urls[channel][date] = get_urls(channel, date)
return urls
def untar(filenames_per_platform, channel):
new_filenames_per_platform = {}
for platform in filenames_per_platform:
extracted = {}
new_filenames_per_platform[platform] = {}
for date, filenames in filenames_per_platform[platform].items():
new_filenames_per_platform[platform][date] = []
for filename in filenames:
if filename in extracted:
new_filenames_per_platform[platform][date] += extracted[filename]
continue
with tarfile.open(filename) as file:
folder = os.path.split(filename)[0]
for i, compressed_filename in enumerate(file.getnames()):
if compressed_filename.split('_')[-2] == channel:
new_filename = os.path.join(folder, compressed_filename)
if not os.path.exists(new_filename):
file.extract(compressed_filename, folder)
new_filenames_per_platform[platform][date].append(new_filename)
extracted[filename] = new_filenames_per_platform[platform][date]
os.remove(filename)
return new_filenames_per_platform
def read(filenames, platform=None, channel=None, requested_date=None):
smallest_timedelta = None
for filename in filenames:
filename_datetime = datetime.strptime(filename.split('_')[-1], '%Y%m%d%H%M')
current_timedelta = abs(requested_date - filename_datetime)
if smallest_timedelta is None or current_timedelta < smallest_timedelta:
closest_filename = filename
smallest_timedelta = current_timedelta
radar = Level3File(closest_filename)
if channel[:3] in ["N0M", "N1M", "N2M", "N3M"]:
return read_melting_layer(radar)
datadict = radar.sym_block[0][0]
if 'latitude' in datadict:
width = 0.25
lat = datadict['latitude']
lon = datadict['longitude']
radials = datadict['components'].radials
azimuths = np.array([radial.azimuth for radial in radials])
ranges = np.array([i * width for i in range(radials[0].num_bins)])
data = np.array([radial.data for radial in radials])
else:
lon = radar.lon
lat = radar.lat
azimuths = np.array(datadict['start_az'] + [datadict['end_az'][-1]])
data = radar.map_data(datadict['data'])
if channel[:3] in ['DPR']: data = data / 1000 * 25.4 # milipouce/h to mm/h
ranges = np.linspace(0, radar.max_range, data.shape[-1] + 1)
range_grid, azimuth_grid = np.meshgrid(ranges, azimuths)
lons, lats, _ = WGS84.fwd(
np.ones(azimuth_grid.shape) * lon,
np.ones(azimuth_grid.shape) * lat,
azimuth_grid,
range_grid * 1000
)
if lons.shape[0] == data.shape[0] + 1:
lats = lats[:-1]
lons = lons[:-1]
if lons.shape[1] == data.shape[1] + 1:
lats = lats[:, :-1]
lons = lons[:, :-1]
return lats, lons, data
def main(
sentinel1_key=None,
sentinel1_keys_filename=None,
requests_filename=None,
sensor_operational_mode=None,
data='NEXRAD_L3',
channel=None,
max_timedelta=None,
time_step=5,
create_gif=None,
verbose=None,
delta_factor=None):
keys, channel, verbose, platforms, create_gif, max_timedelta, time_step, delta_factor = check_args(
sentinel1_key=sentinel1_key,
sentinel1_keys_filename=sentinel1_keys_filename,
requests_filename=requests_filename,
channel=channel,
sensor_operational_mode=sensor_operational_mode,
data=data,
max_timedelta=max_timedelta,
time_step=time_step,
create_gif=create_gif,
verbose=verbose,
delta_factor=delta_factor
)
for i, (filename, requested_date, polygon) in enumerate(keys):
log_print(f"Request {i + 1}/{len(keys)}: {filename}", 1, verbose)
projection_lats, projection_lons = get_iw_latlon(polygon=polygon)
log_print(f"Retrieve NEXRAD colocalizations", 2, verbose)
closest_station = get_closest_nexrad_station(polygon)
long_channel = channel + closest_station[1:]
log_print(f"Closest station is {closest_station}", 2, verbose)
log_print(f"Downloading", 2, verbose)
urls_per_platforms = get_bucket_urls(closest_station, requested_date, max_timedelta, time_step)
filenames_per_platform = download_files(urls_per_platforms, closest=False)
log_print("Extracting", 2, verbose)
filenames_per_platform = untar(filenames_per_platform, long_channel)
if not filenames_per_platform[closest_station]:
log_print(f"Station {closest_station} has no data for channel {channel} at {requested_date}", 1, verbose)
continue
log_print("Project on S1 lat/lon grid", 2, verbose)
closest_date = \
sorted([(abs(requested_date - date), date) for date in filenames_per_platform[closest_station]])[0][1]
lats, lons, data = read(filenames_per_platform[closest_station][closest_date], channel=long_channel, requested_date=closest_date)
closest_file_data = reproject(closest_station, data, lats, lons, projection_lats, projection_lons)
os.makedirs('outputs/' + filename, exist_ok=True)
save_reprojection(closest_station, long_channel, closest_file_data, f'outputs/{filename}/{filename}_{channel}')
if create_gif:
log_print(".gif generation is asked", 2, verbose)
generate_gif(polygon, channel, filenames_per_platform, f'outputs/{filename}/{filename}_{channel}.gif',
verbose, read, download=False, delta_factor=delta_factor)
log_print("Done", 1, verbose)
if __name__ == "__main__":
fire.Fire(main)