-
Notifications
You must be signed in to change notification settings - Fork 0
/
CIFAR_dropin.py
311 lines (176 loc) · 5.74 KB
/
CIFAR_dropin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#!/usr/bin/env python
# coding: utf-8
# In[30]:
import torch
import torchvision
import torchvision.transforms as transforms
# In[31]:
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# In[32]:
import matplotlib.pyplot as plt
import numpy as np
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
# # show images
# imshow(torchvision.utils.make_grid(images))
# # print labels
# print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
# In[33]:
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
# In[34]:
scale = 1.
mask = list()
for i, param in enumerate(net.parameters()):
if i<4:
m = np.ones((param.detach().numpy()).shape)
else:
m = np.random.binomial(1, scale, size=(param.detach().numpy()).shape)
mask.append(torch.tensor(m))
# In[35]:
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# In[36]:
losses = list()
for epoch in range(10): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
for p, m in zip(net.parameters(), mask):
p.grad *= m
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
losses.append(running_loss / 2000)
running_loss = 0.0
print('Finished Training')
np.save('loss_hist/losses_'+str(int(1/scale))+'.npy', np.array(losses))
# In[ ]:
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
# In[ ]:
print(inputs.grad)
# In[ ]:
grads = []
for param in net.parameters():
grads.append(param.grad.view(-1))
# In[ ]:
paras = []
for param in net.parameters():
paras.append(param.view(-1))
# In[ ]:
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
# In[ ]:
dataiter = iter(testloader)
images, labels = dataiter.next()
# # print images
# imshow(torchvision.utils.make_grid(images))
# print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
# In[ ]:
net = Net()
net.load_state_dict(torch.load(PATH))
# In[15]:
outputs = net(images)
# In[16]:
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
for j in range(4)))
# In[17]:
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
# In[18]:
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))
# In[19]:
from scipy import stats
import pickle
paras = list()
dists = list()
for param in net.parameters():
paras.append((param.view(-1)).detach().numpy())
weights = np.squeeze(paras[-1].flatten())
dists.append(stats.gaussian_kde(weights))
pickle.dump( dists, open( "dists.pkl", "wb" ) )
# In[20]:
# for p, d in zip(paras, dists):
# x_plot = np.linspace(p.min(), p.max(), 100, endpoint=True)
# plt.figure()
# plt.hist(p, bins=100, density=True)
# plt.plot(x_plot, d.pdf(x_plot))
# plt.show()
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]: