forked from jeffmcm1977/CMBAnalysis_SummerSchool
-
Notifications
You must be signed in to change notification settings - Fork 13
/
lens_modules.py
110 lines (93 loc) · 4.27 KB
/
lens_modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import numpy as np
import matplotlib.pyplot as plt
# We use some stuff we learned before
from cmb_modules import calculate_2d_spectrum,make_CMB_T_map
# We need to load the theory spectra
def get_theory():
ells,tt,_,_,pp,_ = np.loadtxt("CAMB_fiducial_cosmo_scalCls.dat",unpack=True)
TCMB2 = 7.4311e12
ckk = pp/4./TCMB2
ucltt = tt / ells/(ells+1.)*2.*np.pi
ells2,lcltt = np.loadtxt("CMB_fiducial_totalCls.dat",unpack=True,usecols=[0,1])
lcltt = lcltt / ells2/(ells2+1.)*2.*np.pi
lcltt = lcltt[:len(ells)]
return ells,ucltt,lcltt,ckk
def get_lensed(patch_deg_width,pix_size,ells,ucltt,clkk):
# Number of pixels in each direction
N = int(patch_deg_width*60./pix_size)
# We next generate an unlensed CMB map as a Gaussian random field as we learned before
DlTT = ucltt*ells*(ells+1.)/2./np.pi
unlensed = make_CMB_T_map(N,pix_size,ells,DlTT)
# We also need a lensing convergence (kappa) map
DlKK = clkk*ells*(ells+1.)/2./np.pi
kappa = make_CMB_T_map(N,pix_size,ells,DlKK)
# We get the Fourier coordinates
ly,lx,modlmap = get_ells(N,pix_size)
# Now we can lens our input unlensed map
lensed = lens_map(unlensed,kappa,modlmap,ly,lx,N,pix_size)
return N,lensed,kappa,ly,lx,modlmap
def lens_map(imap,kappa,modlmap,ly,lx,N,pix_size):
# First we convert lensing convergence to lensing potential
phi = kappa_to_phi(kappa,modlmap,return_fphi=True)
# Then we take its gradient to get the deflection field
grad_phi = gradient(phi,ly,lx)
# Then we calculate the displaced positions by shifting the physical positions by the deflections
pos = posmap(N,pix_size) + grad_phi
# We convert the displaced positions into fractional displaced pixel numbers
# because scipy doesn't know about physical distances
pix = sky2pix(pos, N,pix_size)
# We prepare an empty output lensed map array
omap = np.empty(imap.shape, dtype= imap.dtype)
# We then tell scipy to calculate the values of the input lensed map
# at the displaced fractional positions by interpolation and grid that onto the final lensed map
from scipy.ndimage import map_coordinates
map_coordinates(imap, pix, omap, order=5, mode='wrap')
return omap
# This function needs to know about the Fourier coordinates of the map
def get_ells(N,pix_size):
# This function returns Fourier wavenumbers for a Cartesian square grid
N=int(N)
ones = np.ones(N)
inds = (np.arange(N)+.5 - N/2.) /(N-1.)
ell_scale_factor = 2. * np.pi
lx = np.outer(ones,inds) / (pix_size/60. * np.pi/180.) * ell_scale_factor
ly = np.transpose(lx)
modlmap = np.sqrt(lx**2. + ly**2.)
return ly,lx,modlmap
# We need to convert kappa to phi
def kappa_to_phi(kappa,modlmap,return_fphi=False):
return filter_map(kappa,kmask(2./modlmap/(modlmap+1.),modlmap,ellmin=2))
# where we used a Fourier space masking function which will come in handy
def kmask(filter2d,modlmap,ellmin=None,ellmax=None):
# Apply a minimum and maximum multipole mask to a filter
if ellmin is not None: filter2d[modlmap<ellmin] = 0
if ellmax is not None: filter2d[modlmap>ellmax] = 0
return filter2d
# To do that we also need to know generally how to filter a map
def filter_map(Map,filter2d):
FMap = np.fft.fftshift(np.fft.fft2(Map))
FMap_filtered = FMap * filter2d
Map_filtered = np.real(np.fft.ifft2(np.fft.ifftshift(FMap_filtered)))
return Map_filtered
# We also need to calculate a gradient
# We do this in Fourier space
def gradient(imap,ly,lx):
# Filter the map by (i ly, i lx) to get gradient
return np.stack([filter_map(imap,ly*1j),filter_map(imap,lx*1j)])
# We also needed the map of physical positions
def posmap(N,pix_size):
pix = np.mgrid[:N,:N]
return pix2sky(pix,N,pix_size)
# For that we need to be able to convert pixel indices to sky positions
def pix2sky(pix,N,pix_size):
py,px = pix
dec = np.deg2rad((py - N//2 - 0.5)*pix_size/60.)
ra = np.deg2rad((px - N//2 - 0.5)*pix_size/60.)
return np.stack([dec,ra])
# Finally, for the lensing operation, we also needed to convert physical sky positions to pixel indices
# which is just the inverse of the above
def sky2pix(pos,N,pix_size):
dec,ra = np.rad2deg(pos)*60.
py = dec/pix_size + N//2 + 0.5
px = ra/pix_size + N//2 + 0.5
return np.stack([py,px])