-
Notifications
You must be signed in to change notification settings - Fork 0
/
powerlawnoise.py
147 lines (113 loc) · 4.84 KB
/
powerlawnoise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
"""Generate colored noise."""
from numpy import sqrt, newaxis, integer
from numpy.fft import irfft, rfftfreq
from numpy.random import default_rng, Generator, RandomState
from numpy import sum as npsum
def powerlaw_psd_gaussian(exponent, size, fmin=0, random_state=None):
"""Gaussian (1/f)**beta noise.
Based on the algorithm in:
Timmer, J. and Koenig, M.:
On generating power law noise.
Astron. Astrophys. 300, 707-710 (1995)
Normalised to unit variance
Parameters:
-----------
exponent : float
The power-spectrum of the generated noise is proportional to
S(f) = (1 / f)**beta
flicker / pink noise: exponent beta = 1
brown noise: exponent beta = 2
Furthermore, the autocorrelation decays proportional to lag**-gamma
with gamma = 1 - beta for 0 < beta < 1.
There may be finite-size issues for beta close to one.
shape : int or iterable
The output has the given shape, and the desired power spectrum in
the last coordinate. That is, the last dimension is taken as time,
and all other components are independent.
fmin : float, optional
Low-frequency cutoff.
Default: 0 corresponds to original paper.
The power-spectrum below fmin is flat. fmin is defined relative
to a unit sampling rate (see numpy's rfftfreq). For convenience,
the passed value is mapped to max(fmin, 1/samples) internally
since 1/samples is the lowest possible finite frequency in the
sample. The largest possible value is fmin = 0.5, the Nyquist
frequency. The output for this value is white noise.
random_state : int, numpy.integer, numpy.random.Generator, numpy.random.RandomState,
optional
Optionally sets the state of NumPy's underlying random number generator.
Integer-compatible values or None are passed to np.random.default_rng.
np.random.RandomState or np.random.Generator are used directly.
Default: None.
Returns
-------
out : array
The samples.
Examples:
---------
# generate 1/f noise == pink noise == flicker noise
>>> import colorednoise as cn
>>> y = cn.powerlaw_psd_gaussian(1, 5)
"""
# Make sure size is a list so we can iterate it and assign to it.
try:
size = list(size)
except TypeError:
size = [size]
# The number of samples in each time series
samples = size[-1]
# Calculate Frequencies (we asume a sample rate of one)
# Use fft functions for real output (-> hermitian spectrum)
f = rfftfreq(samples)
# Validate / normalise fmin
if 0 <= fmin <= 0.5:
fmin = max(fmin, 1./samples) # Low frequency cutoff
else:
raise ValueError("fmin must be chosen between 0 and 0.5.")
# Build scaling factors for all frequencies
s_scale = f
ix = npsum(s_scale < fmin) # Index of the cutoff
if ix and ix < len(s_scale):
s_scale[:ix] = s_scale[ix]
s_scale = s_scale**(-exponent/2.)
# Calculate theoretical output standard deviation from scaling
w = s_scale[1:].copy()
w[-1] *= (1 + (samples % 2)) / 2. # correct f = +-0.5
sigma = 2 * sqrt(npsum(w**2)) / samples
# Adjust size to generate one Fourier component per frequency
size[-1] = len(f)
# Add empty dimension(s) to broadcast s_scale along last
# dimension of generated random power + phase (below)
dims_to_add = len(size) - 1
s_scale = s_scale[(newaxis,) * dims_to_add + (Ellipsis,)]
# prepare random number generator
normal_dist = _get_normal_distribution(random_state)
# Generate scaled random power + phase
sr = normal_dist(scale=s_scale, size=size)
si = normal_dist(scale=s_scale, size=size)
# If the signal length is even, frequencies +/- 0.5 are equal
# so the coefficient must be real.
if not (samples % 2):
si[..., -1] = 0
sr[..., -1] *= sqrt(2) # Fix magnitude
# Regardless of signal length, the DC component must be real
si[..., 0] = 0
sr[..., 0] *= sqrt(2) # Fix magnitude
# Combine power + corrected phase to Fourier components
s = sr + 1J * si
# Transform to real time series & scale to unit variance
y = irfft(s, n=samples, axis=-1) / sigma
return y
def _get_normal_distribution(random_state):
normal_dist = None
if isinstance(random_state, (integer, int)) or random_state is None:
random_state = default_rng(random_state)
normal_dist = random_state.normal
elif isinstance(random_state, (Generator, RandomState)):
normal_dist = random_state.normal
else:
raise ValueError(
"random_state must be one of integer, numpy.random.Generator, "
"numpy.random.Randomstate"
)
return normal_dist