Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add malanchev light curve feature extractors #167

Merged
merged 1 commit into from
Feb 1, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
174 changes: 174 additions & 0 deletions resspect/feature_extractors/malanchev.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
# Copyright 2020 resspect software
# Author: Emille E. O. Ishida
#
# created on 9 April 2023
#
# Licensed GNU General Public License v3.0;
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.gnu.org/licenses/gpl-3.0.en.html
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

## This modules uses features from https://github.com/light-curve/light-curve

import numpy as np
import light_curve as licu
from resspect.feature_extractors.light_curve import LightCurve

__all__ = ['MalanchevFeatureExtractor']

class MalanchevFeatureExtractor(LightCurve):
def __init__(self):
super().__init__()
self.features_names = ['anderson_darling_normal',
'inter_percentile_range_5',
'chi2',
'stetson_K',
'weighted_mean',
'duration',
'otsu_mean_diff',
'otsu_std_lower',
'otsu_std_upper',
'otsu_lower_to_all_ratio',
'linear_fit_slope',
'linear_fit_slope_sigma',
'linear_fit_reduced_chi2']


def fit(self, band: str) -> np.ndarray:
"""
Extracts malanchev-light-curve features for one filter.

Parameters
----------
band: str
Choice of broad band filter

Returns
-------
mlc_param: np.ndarray
Features from malanchev-light-curve:
['anderson_darling_normal',
'inter_percentile_range_5',
'chi2',
'stetson_K',
'weighted_mean',
'duration',
'otsu_mean_diff',
'otsu_std_lower',
'otsu_std_upper',
'otsu_lower_to_all_ratio',
'linear_fit_slope',
'linear_fit_slope_sigma',
'linear_fit_reduced_chi2'].
"""

# build filter flag
band_indices = self.photometry['band'] == band
if not sum(band_indices) > (len(self.features_names) - 1):
return np.array([])

extractor = licu.Extractor(licu.AndersonDarlingNormal(),
licu.InterPercentileRange(0.05),
licu.ReducedChi2(),
licu.StetsonK(),
licu.WeightedMean(),
licu.Duration(),
licu.OtsuSplit(),
licu.LinearFit())

# get info for this filter
time = self.photometry['mjd'].values[band_indices]
idx = np.argsort(time)
flux = self.photometry['flux'].values[band_indices]
flux_error = self.photometry['fluxerr'].values[band_indices]

time = time[idx].astype(float)
flux = flux[idx].astype(float)
flux_error = flux_error[idx].astype(float)

return extractor(time, flux, flux_error,
fill_value=-999,
sorted=True,
check=False)



def fit_all_points(self):
"""
Extracts Malanchev's light_curve features for all data points in all filters together.

Populates self.photometry with features:
AndersonDarlingNormal, InterPercentileRange(0.05),
ReducedChi2, StetsonK, WeightedMean, Duration, OtsuSplit,
LinearFit.

Returns
-------
mlc_param: np.ndarray
Features from malanchev-light-curve:
['anderson_darling_normal',
'inter_percentile_range_5',
'chi2',
'stetson_K',
'weighted_mean',
'duration',
'otsu_mean_diff',
'otsu_std_lower',
'otsu_std_upper',
'otsu_lower_to_all_ratio',
'linear_fit_slope',
'linear_fit_slope_sigma',
'linear_fit_reduced_chi2'].
"""

extractor = licu.Extractor(licu.AndersonDarlingNormal(),
licu.InterPercentileRange(0.05),
licu.ReducedChi2(),
licu.StetsonK(),
licu.WeightedMean(),
licu.Duration(),
licu.OtsuSplit(),
licu.LinearFit())

# get info for this filter
time = self.photometry['mjd'].values
idx = np.argsort(time)

time = time[idx].astype(float)
flux = self.photometry['flux'].values[idx].astype(float)
flux_error = self.photometry['fluxerr'].values[idx].astype(float)


return extractor(time, flux, flux_error,
fill_value = -999,
sorted = True,
check = False)

def fit_all(self):
"""
Performs malanchev-light-curve feature extraction for all filters independently and concatenate results.
Populates the attributes: mlcfeatures.
"""
default_mlcfeatures = ['None'] * len(self.features_names)

if self.photometry.shape[0] < 1:
self.features = ['None'] * len(
self.features_names) * len(self.filters)

elif 'None' not in self.features:
self.features = []
for each_band in self.filters:
best_fit = self.fit(band=each_band)
if (best_fit.size > 0) and (not np.isnan(np.sum(best_fit))):
self.features.extend(best_fit.tolist())
else:
self.features.extend(default_mlcfeatures)
else:
self.features.extend(default_mlcfeatures)
Loading