-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
78 lines (62 loc) · 2.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import time
from options.train_options import TrainOptions
from data import DataLoader
from models import create_model
from util.writer import Writer
from test import run_test
if __name__ == '__main__':
opt = TrainOptions().parse()
dataset = DataLoader(opt)
dataset_size = len(dataset)
print('#training meshes = %d' % dataset_size)
model = create_model(opt)
writer = Writer(opt)
total_steps = 0
print("OPT NITER "+ str(opt.niter))
print("OPT NITER DECAY "+ str(opt.niter_decay))
#for every epoch
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
#niterations = 1
#for epoch in range(niterations):
epoch_start_time = time.time()
iter_data_time = time.time()
epoch_iter = 0
#for every mesh
for i, data in enumerate(dataset):
#print("DATA "+str(i))
#print(dataset.opt.paths[i])
#print(data['path'])
iter_start_time = time.time()
if total_steps % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_steps += opt.batch_size
epoch_iter += opt.batch_size
model.set_input(data)
model.optimize_parameters()
if total_steps % opt.print_freq == 0:
loss = model.loss
t = (time.time() - iter_start_time) / opt.batch_size
# print this (epoch: 3, iters: 80, time: 0.183, data: 0.181) loss: 3.089
writer.print_current_losses(epoch, epoch_iter, loss, t, t_data)
writer.plot_loss(loss, epoch, epoch_iter, dataset_size)
if i % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save_network('latest')
iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save_network('latest')
model.save_network(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()
if opt.verbose_plot:
writer.plot_model_wts(model, epoch)
if epoch % opt.run_test_freq == 0:
acc = run_test(epoch)
writer.plot_acc(acc, epoch)
#print("FINISHHHHHHHHHHH ITERATIONNNNNN "+str(epoch))
#break
writer.close()