-
Notifications
You must be signed in to change notification settings - Fork 206
/
Copy pathtest_features_onsets.py
297 lines (223 loc) · 11.7 KB
/
test_features_onsets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# encoding: utf-8
# pylint: skip-file
"""
This file contains tests for the madmom.features.onsets module.
"""
from __future__ import absolute_import, division, print_function
import unittest
from os.path import join as pj
from madmom.audio.filters import LogarithmicFilterbank
from madmom.audio.signal import SignalProcessor, FramedSignalProcessor
from madmom.audio.spectrogram import (Spectrogram, SpectrogramProcessor,
FilteredSpectrogramProcessor,
LogarithmicFilteredSpectrogram,
LogarithmicSpectrogramProcessor)
from madmom.audio.stft import ShortTimeFourierTransformProcessor
from madmom.features import Activations
from madmom.features.onsets import *
from . import AUDIO_PATH, ACTIVATIONS_PATH
sample_file = pj(AUDIO_PATH, 'sample.wav')
sample_spec = Spectrogram(sample_file, circular_shift=True)
sample_log_filt_spec = LogarithmicFilteredSpectrogram(
sample_spec, num_bands=24, mul=1, add=1)
sample_cnn_act = Activations(pj(ACTIVATIONS_PATH, 'sample.onsets_cnn.npz'))
sample_rnn_act = Activations(pj(ACTIVATIONS_PATH, 'sample.onsets_rnn.npz'))
sample_brnn_act = Activations(pj(ACTIVATIONS_PATH, 'sample.onsets_brnn.npz'))
sample_superflux_act = Activations(pj(ACTIVATIONS_PATH,
'sample.super_flux.npz'))
class TestHighFrequencyContentFunction(unittest.TestCase):
def test_values(self):
odf = high_frequency_content(sample_log_filt_spec)
self.assertTrue(np.allclose(odf[:6], [8.97001563, 9.36399107,
8.64144536, 8.34977449,
8.21097918, 8.40412515]))
class TestFunction(unittest.TestCase):
def test_values(self):
odf = high_frequency_content(sample_log_filt_spec)
self.assertTrue(np.allclose(odf[:6], [8.97001563, 9.36399107,
8.64144536, 8.34977449,
8.21097918, 8.40412515]))
class TestSpectralDiffFunction(unittest.TestCase):
def test_values(self):
odf = spectral_diff(sample_log_filt_spec)
self.assertTrue(np.allclose(odf[:6], [0, 0.55715936, 0.64004618,
0.0810971, 0.295396,
0.16324584]))
class TestSpectralFluxFunction(unittest.TestCase):
def test_values(self):
odf = spectral_flux(sample_log_filt_spec)
self.assertTrue(np.allclose(odf[:6], [0, 3.91207361, 2.91675663,
1.38361311, 2.59582925,
2.16986609]))
class TestSuperfluxFunction(unittest.TestCase):
def test_values(self):
odf = superflux(sample_log_filt_spec)
self.assertTrue(np.allclose(odf[:6], [0, 2.08680153, 0.6411702,
0.38634294, 0.40202433,
0.63349575]))
class TestComplexFluxFunction(unittest.TestCase):
def test_values(self):
odf = complex_flux(sample_log_filt_spec)
self.assertTrue(np.allclose(odf[:6], [0, 0.476213485, 0.0877621323,
0.0593151376, 0.0654867291,
0.0954693183]))
class TestModifiedKullbackLeiblerFunction(unittest.TestCase):
def test_values(self):
odf = modified_kullback_leibler(sample_log_filt_spec)
self.assertTrue(np.allclose(odf[:6], [0, 0.71910584, 0.6664055,
0.68092251, 0.69984031,
0.71744561]))
class TestPhaseDeviationFunction(unittest.TestCase):
def test_values(self):
odf = phase_deviation(sample_log_filt_spec)
self.assertTrue(np.allclose(odf[:6], [0, 0, 0.71957183, 0.91994524,
0.9418999, 0.86083585]))
class TestWeightedPhaseDeviationFunction(unittest.TestCase):
def test_values(self):
odf = weighted_phase_deviation(sample_spec)
self.assertTrue(np.allclose(odf[:6], [0, 0, 0.19568817, 0.20483065,
0.17890805, 0.16970603]))
def test_errors(self):
with self.assertRaises(ValueError):
weighted_phase_deviation(sample_log_filt_spec)
class TestNormalizesWeightedPhaseDeviationFunction(unittest.TestCase):
def test_values(self):
odf = normalized_weighted_phase_deviation(sample_spec)
self.assertTrue(np.allclose(odf[:6], [0, 0, 0.46018526, 0.50193471,
0.42031503, 0.40806249]))
def test_errors(self):
with self.assertRaises(ValueError):
normalized_weighted_phase_deviation(sample_log_filt_spec)
class TestComplexDomainFunction(unittest.TestCase):
def test_values(self):
odf = complex_domain(sample_spec)
self.assertTrue(np.allclose(odf[:6], [399.29980469, 585.9564209,
262.08010864, 225.84718323,
196.88954163, 200.32469177]))
def test_errors(self):
with self.assertRaises(ValueError):
complex_domain(sample_log_filt_spec)
class TestRectifiedComplexDomainFunction(unittest.TestCase):
def test_values(self):
odf = rectified_complex_domain(sample_spec)
self.assertTrue(np.allclose(odf[:6], [0, 394.165222, 119.79425,
96.70564, 122.52311, 92.61698]))
def test_errors(self):
with self.assertRaises(ValueError):
rectified_complex_domain(sample_log_filt_spec)
class TestSpectralOnsetProcessorClass(unittest.TestCase):
def setUp(self):
self.processor = SpectralOnsetProcessor()
def test_processors(self):
proc = SpectralOnsetProcessor()
self.assertIsInstance(proc.processors[0], SignalProcessor)
self.assertIsInstance(proc.processors[1], FramedSignalProcessor)
self.assertIsInstance(proc.processors[2],
ShortTimeFourierTransformProcessor)
self.assertIsInstance(proc.processors[3], SpectrogramProcessor)
self.assertEqual(proc.processors[4], spectral_flux)
def test_filterbank(self):
# with filtering
proc = SpectralOnsetProcessor(filterbank=LogarithmicFilterbank)
self.assertIsInstance(proc.processors[4], FilteredSpectrogramProcessor)
self.assertEqual(proc.processors[5], spectral_flux)
def test_scaling(self):
# with logarithmic scaling
proc = SpectralOnsetProcessor(log=np.log10)
self.assertIsInstance(proc.processors[4],
LogarithmicSpectrogramProcessor)
self.assertEqual(proc.processors[5], spectral_flux)
def test_filtered_scaling(self):
# with both filtering and logarithmic scaling
proc = SpectralOnsetProcessor(filterbank=LogarithmicFilterbank,
log=np.log10)
self.assertIsInstance(proc.processors[4], FilteredSpectrogramProcessor)
self.assertIsInstance(proc.processors[5],
LogarithmicSpectrogramProcessor)
self.assertEqual(proc.processors[6], spectral_flux)
def test_circular_shift(self):
# circular shift
proc = SpectralOnsetProcessor(onset_method='phase_deviation')
self.assertIsInstance(proc.processors[2],
ShortTimeFourierTransformProcessor)
self.assertTrue(proc.processors[2].circular_shift)
self.assertEqual(proc.processors[4], phase_deviation)
def test_errors(self):
with self.assertRaises(ValueError):
SpectralOnsetProcessor(onset_method='nonexistent')
def test_process(self):
odf = self.processor(sample_file)
self.assertTrue(np.allclose(odf[:6], [0., 100.90120697, 74.44419861,
40.277565, 57.95736313,
46.15561295]))
class TestRNNOnsetProcessorClass(unittest.TestCase):
def setUp(self):
self.processor = RNNOnsetProcessor()
self.online_processor = RNNOnsetProcessor(online=True, origin='online')
def test_process(self):
act = self.processor(sample_file)
self.assertTrue(np.allclose(act, sample_brnn_act))
act = self.online_processor(sample_file, reset=False)
self.assertTrue(np.allclose(act, sample_rnn_act))
class TestCNNOnsetProcessorClass(unittest.TestCase):
def setUp(self):
self.processor = CNNOnsetProcessor()
def test_process(self):
act = self.processor(sample_file)
self.assertTrue(np.allclose(act, sample_cnn_act))
class TestPeakPickingFunction(unittest.TestCase):
def test_values(self):
onsets = peak_picking(sample_superflux_act, 1.1)
self.assertTrue(np.allclose(onsets[:6], [2, 10, 17, 48, 55, 80]))
self.assertTrue(len(onsets) == 35)
# smooth
onsets = peak_picking(sample_superflux_act, 1.1, smooth=3)
self.assertTrue(np.allclose(onsets[:6], [2, 10, 17, 24, 48, 55]))
# default values
onsets = peak_picking(sample_superflux_act, 1.1, pre_max=2,
post_max=10, pre_avg=30)
self.assertTrue(np.allclose(onsets[:6], [2, 17, 55, 89, 122, 159]))
def test_online(self):
onsets = peak_picking(sample_rnn_act, threshold=0.23, post_max=0)
self.assertTrue(np.allclose(onsets,
[1, 3, 10, 12, 29, 46, 62, 63, 77, 79,
81, 99, 100, 113, 115, 148, 149, 164,
181, 183, 216, 234, 250, 268]))
self.assertTrue(len(onsets) == 24)
class TestOnsetPeakPickingProcessorClass(unittest.TestCase):
def setUp(self):
self.processor = OnsetPeakPickingProcessor(
threshold=1.1, pre_max=0.01, post_max=0.05, pre_avg=0.15,
post_avg=0, combine=0.03, delay=0, fps=sample_superflux_act.fps)
self.sample_superflux_result = [0.01, 0.085, 0.275, 0.445, 0.61, 0.795,
0.98, 1.115, 1.365, 1.475, 1.62,
1.795, 2.14, 2.33, 2.485, 2.665]
self.online_processor = OnsetPeakPickingProcessor(
threshold=0.23, online=True, fps=sample_rnn_act.fps)
self.sample_rnn_result = [0.01, 0.1, 0.29, 0.46, 0.62, 0.77, 0.81,
0.99, 1.13, 1.48, 1.64, 1.81, 2.16, 2.34,
2.5, 2.68]
def test_online_parameters(self):
self.assertEqual(self.online_processor.smooth, 0)
self.assertEqual(self.online_processor.post_avg, 0)
self.assertEqual(self.online_processor.post_max, 0)
def test_process(self):
onsets = self.processor(sample_superflux_act)
self.assertTrue(np.allclose(onsets, self.sample_superflux_result))
def test_process_online(self):
# process everything at once
onsets = self.online_processor(sample_rnn_act)
self.assertTrue(np.allclose(onsets, self.sample_rnn_result))
# results must be the same if processed a second time
onsets_1 = self.online_processor(sample_rnn_act)
self.assertTrue(np.allclose(onsets_1, self.sample_rnn_result))
# process frame by frame
self.online_processor.reset()
onsets_2 = np.hstack(
[self.online_processor(np.atleast_1d(f), reset=False)
for f in sample_rnn_act])
self.assertTrue(np.allclose(onsets_2, self.sample_rnn_result))
def test_delay(self):
self.processor.delay = 1
onsets = self.processor(sample_superflux_act)
self.assertTrue(np.allclose(onsets - 1, self.sample_superflux_result))