-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspm_ECdensity.m
73 lines (59 loc) · 2.39 KB
/
spm_ECdensity.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
function [EC] = spm_ECdensity(STAT,t,df)
% Returns the Euler characteristic (EC) density
% FORMAT function [EC] = spm_ECdensity(STAT,t,df)
%__________________________________________________________________________
%
% Reference : Worsley KJ et al (1996), Hum Brain Mapp. 4:58-73
%__________________________________________________________________________
% Copyright (C) 1999-2013 Wellcome Trust Centre for Neuroimaging
% Karl Friston
% $Id: spm_ECdensity.m 5544 2013-06-12 11:01:49Z guillaume $
% EC densities
%--------------------------------------------------------------------------
t = t(:)';
if STAT == 'Z'
% Gaussian Field
%----------------------------------------------------------------------
a = 4*log(2);
b = exp(-t.^2/2);
EC(1,:) = 1 - spm_Ncdf(t);
EC(2,:) = a^(1/2)/(2*pi)*b;
EC(3,:) = a/((2*pi)^(3/2))*b.*t;
EC(4,:) = a^(3/2)/((2*pi)^2)*b.*(t.^2 - 1);
elseif STAT == 'T'
% T - Field
%----------------------------------------------------------------------
v = df(2);
a = 4*log(2);
b = exp(gammaln((v+1)/2) - gammaln(v/2));
c = (1+t.^2/v).^((1-v)/2);
EC(1,:) = 1 - spm_Tcdf(t,v);
EC(2,:) = a^(1/2)/(2*pi)*c;
EC(3,:) = a/((2*pi)^(3/2))*c.*t/((v/2)^(1/2))*b;
EC(4,:) = a^(3/2)/((2*pi)^2)*c.*((v-1)*(t.^2)/v - 1);
elseif STAT == 'X'
% X - Field
%----------------------------------------------------------------------
v = df(2);
a = (4*log(2))/(2*pi);
b = t.^(1/2*(v - 1)).*exp(-t/2-gammaln(v/2))/2^((v-2)/2);
EC(1,:) = 1 - spm_Xcdf(t,v);
EC(2,:) = a^(1/2)*b;
EC(3,:) = a*b.*(t-(v-1));
EC(4,:) = a^(3/2)*b.*(t.^2-(2*v-1)*t+(v-1)*(v-2));
elseif STAT == 'F'
% F Field
%----------------------------------------------------------------------
k = df(1);
v = df(2);
a = (4*log(2))/(2*pi);
b = gammaln(v/2) + gammaln(k/2);
EC(1,:) = 1 - spm_Fcdf(t,df);
EC(2,:) = a^(1/2)*exp(gammaln((v+k-1)/2)-b)*2^(1/2)...
*(k*t/v).^(1/2*(k-1)).*(1+k*t/v).^(-1/2*(v+k-2));
EC(3,:) = a*exp(gammaln((v+k-2)/2)-b)*(k*t/v).^(1/2*(k-2))...
.*(1+k*t/v).^(-1/2*(v+k-2)).*((v-1)*k*t/v-(k-1));
EC(4,:) = a^(3/2)*exp(gammaln((v+k-3)/2)-b)...
*2^(-1/2)*(k*t/v).^(1/2*(k-3)).*(1+k*t/v).^(-1/2*(v+k-2))...
.*((v-1)*(v-2)*(k*t/v).^2-(2*v*k-v-k-1)*(k*t/v)+(k-1)*(k-2));
end