-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathmain_score.py
300 lines (255 loc) · 14.5 KB
/
main_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import tensorflow as tf
import numpy as np
from util.load_data_score_graph import load_num_category, load_graph, load_train_data, load_train_size
from model.model_score_in_out import GNN
from datetime import *
import pickle
import os
##################load data###################
read_file_fill = open('fill_in_blank_1000_from_test_score.pkl', 'rb')
test_image, test_graph, test_size = pickle.load(read_file_fill)
def cm_ggnn(batch_size, hidden_size, n_steps, learning_rate, G, num_category, opt, i, beta):
hidden_stdv = np.sqrt(1. / (hidden_size))
if i == 0:
with tf.variable_scope("cm_ggnn", reuse=None):
# w_conf1 = tf.Variable(tf.random_normal([2048+hidden_size, hidden_size]), name='gnn/w/conf_1')
w_conf2 = tf.get_variable(name='gnn/w/conf_2', shape=[hidden_size, 1], initializer=tf.random_normal_initializer(hidden_stdv))
# w_score1 = tf.Variable(tf.random_normal([2048 + hidden_size, hidden_size]), name='gnn/w/score_1')
w_score2 = tf.get_variable(name='gnn/w/score_2', shape=[hidden_size, 1], initializer=tf.random_normal_initializer(hidden_stdv))
else:
tf.get_variable_scope().reuse_variables()
#################feed#######################
image_pos = tf.placeholder(tf.float32, [batch_size, num_category, 2048])
image_neg = tf.placeholder(tf.float32, [batch_size, num_category, 2048])
graph_pos = tf.placeholder(tf.float32, [batch_size, num_category, num_category])
graph_neg = tf.placeholder(tf.float32, [batch_size, num_category, num_category])
##################GGNN's output###################
with tf.variable_scope("gnn", reuse=None):
state_pos, test1 = GNN(image_pos, batch_size, hidden_size, n_steps, num_category, graph_pos) #output: [batch_size, num_category, 2048]
tf.get_variable_scope().reuse_variables()
state_neg, test2 = GNN(image_neg, batch_size, hidden_size, n_steps, num_category, graph_neg)
##################predict positive###################
for j in range(num_category):
# state_image_pos = tf.concat([tf.reshape(state_pos[:, j, :], [-1, hidden_size]),
# tf.reshape(image_pos[:, j, :], [-1, 2048])], 1)
# conf_pos = tf.matmul(state_image_pos, w_conf1)
# conf_pos = tf.nn.tanh(conf_pos)
# conf_pos = tf.reshape(tf.matmul(conf_pos, w_conf2), [-1])
# conf_pos = tf.nn.sigmoid(conf_pos)
conf_pos = tf.matmul(tf.reshape(state_pos[:, j, :], [-1, hidden_size]), w_conf2)
conf_pos = tf.nn.sigmoid(conf_pos)
# score_pos = tf.matmul(state_image_pos, w_score1)
# score_pos = tf.nn.tanh(score_pos)
# score_pos = tf.reshape(tf.matmul(score_pos, w_score2), [-1])
# score_pos = tf.nn.tanh(score_pos)
score_pos = tf.matmul(tf.reshape(state_pos[:, j, :], [-1, hidden_size]), w_score2)
# score_pos = tf.nn.relu(score_pos)
score_pos = tf.maximum(0.01 * score_pos, score_pos)
# state_image_neg = tf.concat([tf.reshape(state_neg[:, j, :], [-1, hidden_size]),
# tf.reshape(image_neg[:, j, :], [-1, 2048])], 1)
# conf_neg = tf.matmul(state_image_neg, w_conf1)
# conf_neg = tf.nn.tanh(conf_neg)
# conf_neg = tf.reshape(tf.matmul(conf_neg, w_conf2), [-1])
# conf_neg = tf.nn.sigmoid(conf_neg)
conf_neg = tf.matmul(tf.reshape(state_neg[:, j, :], [-1, hidden_size]), w_conf2)
conf_neg = tf.nn.sigmoid(conf_neg)
# score_neg = tf.matmul(state_image_neg, w_score1)
# score_neg = tf.nn.tanh(score_neg)
# score_neg = tf.reshape(tf.matmul(score_neg, w_score2), [-1])
# score_neg = tf.nn.tanh(score_neg)
score_neg = tf.matmul(tf.reshape(state_neg[:, j, :], [-1, hidden_size]), w_score2)
# score_neg = tf.nn.relu(score_neg)
score_neg = tf.maximum(0.01 * score_neg, score_neg)
if j == 0:
s_pos = score_pos * conf_pos
s_neg = score_neg * conf_neg
else:
s_pos += score_pos * conf_pos
s_neg += score_neg * conf_neg
s_pos = tf.reshape(s_pos, [-1, 1])
s_neg = tf.reshape(s_neg, [-1, 1])
s_pos = tf.reshape(s_pos, [batch_size, 1])
s_neg = tf.reshape(s_neg, [batch_size, 1])
s_pos_mean = tf.reduce_mean(s_pos)
s_neg_mean = tf.reduce_mean(s_neg)
##################cost, optimizer###################
cost_parameter = 0.
num_parameter = 0.
for variable in tf.trainable_variables():
print (variable)
cost_parameter += tf.contrib.layers.l2_regularizer(beta)(variable)
num_parameter += 1.
cost_parameter /= num_parameter
score = tf.nn.sigmoid(s_pos - s_neg)
score_mean = tf.reduce_mean(score)
cost = -score_mean
if opt == 'Adam':
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
if opt == 'Momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, 0.9).minimize(cost)
if opt == 'RMSProp':
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)
if opt == 'Adadelta':
optimizer = tf.train.AdadeltaOptimizer(learning_rate).minimize(cost)
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
with tf.Session() as sess:
# initialize the graph
# 2017-03-02 if using tensorflow >= 0.12
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
sess.run(init)
######record######
best_accurancy = 0.
best_epoch = 0
saver = tf.train.Saver()
train_size, train_size_ = load_train_size()
print ('train_size is %d' % train_size_)
train_batch = int(train_size_ / batch_size)
print ('train_batch is %d' % train_batch)
for epoch in range(20):
#########train##########
no_count = 0
c_all = 0.
score_all = 0.
para_all = 0.
dis_pos_all = 0.
dis_neg_all = 0.
for i in range(train_batch):
train_image_pos, train_image_neg, train_graph_pos, train_graph_neg, size_ = load_train_data(i, batch_size)
if size_ >= batch_size:
image_pos_ = train_image_pos[0: batch_size]
image_neg_ = train_image_neg[0: batch_size]
train_graph_pos_ = train_graph_pos[0: batch_size]
train_graph_neg_ = train_graph_neg[0: batch_size]
# _, c, c_pred, dis_pos_, dis_neg_, conf_pos_, conf_neg_ = sess.run([optimizer, cost, cost_pred,
# dis_pos_mean, dis_neg_mean, conf_pos_mean, conf_neg_mean],
_, c, score, c_parameter, dis_pos_, dis_neg_ = sess.run(
[optimizer, cost, score_mean, cost_parameter,
s_pos_mean, s_neg_mean],
feed_dict={image_pos: image_pos_,
image_neg: image_neg_,
graph_pos: train_graph_pos_,
graph_neg: train_graph_neg_})
c_all += c
score_all += score
para_all += c_parameter
dis_pos_all += dis_pos_
dis_neg_all += dis_neg_
if i % 2000 == 0:
print ('now batch: %d, total batch: %d' % (i, train_batch))
print ('less than batch size: %d' % no_count)
c_average = c_all / (i + 1)
score_average = score_all / (i + 1)
para_average = para_all / (i + 1)
dis_pos_average = dis_pos_all / (i + 1)
dis_neg_average = dis_neg_all / (i + 1)
############test############
batches = int((test_size * 4) / batch_size)
right = 0.
for ii in range(batches):
answer, result_test, result_state_pos = sess.run([s_pos, test1, state_pos],
feed_dict={image_pos: test_image[ii * batch_size:(ii + 1) * batch_size],
graph_pos: test_graph[ii * batch_size:(ii + 1) * batch_size]}
)
answer = np.asarray(answer)
for j in range(batch_size / 4):
a = []
for k in range(j * 4, (j + 1) * 4):
a.append(answer[k][0])
if np.argmax(a) == 0:
right += 1.
print(answer)
# print("result_state(0 row)")
# print(result_state_pos[0])
# print("result_test(0 row)")
# print(result_test[0])
# print("graph_nodes")
# for graph_ in test_graph[ii * batch_size:(ii + 1) * batch_size]:
# print (look_enable_node(graph_))
accurancy = float(right / test_size)
if accurancy > best_accurancy:
best_accurancy = accurancy
best_epoch = epoch
# saver.save(sess, "trained_model/cm_ggnn.ckpt")
print('now():' + str(datetime.now()))
print("Train Epoch:", '%d' % epoch, "Batch:", '%d' % i,
"total cost:", "{:.9f}".format(c_average), "pred score distance:", "{:.9f}".format(score_average),
"parameter cost:", "{:.9f}".format(para_average), "postive score:", "{:.9f}".format(dis_pos_average),
"negative score:", "{:.9f}".format(dis_neg_average),
"accurancy:", ".{:.9f}".format(accurancy))
print("Epoch:", '%d' % epoch, "finished", "Best accurancy: %f" % best_accurancy,
"Best epoch: %d" % best_epoch)
print("batch_size: %d, hidden_size: %d, n_steps: %d, learning_rate: %f" % (
batch_size, hidden_size, n_steps, learning_rate))
else:
no_count += 1
c_average = c_all / train_batch
score_average = score_all / train_batch
para_average = para_all / train_batch
dis_pos_average = dis_pos_all / train_batch
dis_neg_average = dis_neg_all / train_batch
print("Train Epoch:", '%d' % epoch, "finished",
"total cost:", "{:.9f}".format(c_average), "pred score distance:", "{:.9f}".format(score_average),
"parameter cost:", "{:.9f}".format(para_average),
"postive score:", "{:.9f}".format(dis_pos_average), "negative score:", "{:.9f}".format(dis_neg_average))
print("Epoch:", '%d' % epoch, "finished", "Best accurancy: %f" % best_accurancy,
"Best epoch: %d" % best_epoch)
print("batch_size: %d, hidden_size: %d, n_steps: %d, learning_rate: %f" % (
batch_size, hidden_size, n_steps, learning_rate))
############test############
batches = int((test_size*4) / batch_size)
right = 0.
for i in range(batches):
answer, result_state_pos = sess.run([s_pos, state_pos],
feed_dict={image_pos: test_image[i * batch_size:(i + 1) * batch_size],
graph_pos: test_graph[i * batch_size:(i + 1) * batch_size]}
)
answer = np.asarray(answer)
for j in range(batch_size / 4):
a = []
for k in range(j * 4, (j + 1) * 4):
a.append(answer[k][0])
if np.argmax(a) == 0:
right += 1.
print (answer)
# print("result_state_pos")
# # print(result_state_pos)
accurancy = float(right / test_size)
print("Test Epoch:", '%d' % epoch, "accuracy:", "{:.9f}".format(accurancy))
if accurancy > best_accurancy:
best_accurancy = accurancy
best_epoch = epoch
saver.save(sess, "trained_model/cm_ggnn.ckpt")
print('now():' + str(datetime.now()))
print("batch_size: %d, hidden_size: %d, n_steps: %d, learning_rate: %f" % (
batch_size, hidden_size, n_steps, learning_rate))
print("Epoch:", '%d' % epoch, "finished", "Best accurancy: %f" % best_accurancy,
"Best epoch: %d" % best_epoch)
return best_accurancy
def look_enable_node(graph):
if_enable = np.sum(graph, axis=1)
index_list = []
for index, value in enumerate(if_enable):
if value > 0:
index_list.append(index)
return index_list
if __name__ == '__main__':
num_category = load_num_category()
G = load_graph()
best_accurancy = 0.
i = 0
for batch_size in [16]: #### n*8
for hidden_size in [16, 64]:
for n_steps in [1, 1]:
for learning_rate in [0.001]:
for opt in ['RMSProp', 'Adam']:
for beta in [0.0001, 0.001]:
accurancy = cm_ggnn(batch_size, hidden_size, n_steps, learning_rate, G, num_category, opt, i, beta)
if accurancy > best_accurancy:
best_accurancy = accurancy
best_parameter = [batch_size, hidden_size, n_steps, learning_rate]
print("best parameter is batch_size, hidden_size, n_steps, learning_rate, optimizer:%d, %d ,%d ,%f, %s" % (batch_size,
hidden_size, n_steps, learning_rate, opt))
i += 1