-
Notifications
You must be signed in to change notification settings - Fork 17
/
Res2Net Convotion.py
96 lines (80 loc) · 3.42 KB
/
Res2Net Convotion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
import torch
import torch.nn.functional as F
__all__ = ['Res2Net', 'res2net50']
# source: https://github.com/Res2Net/Res2Net-PretrainedModels/blob/master/res2net.py
model_urls = {
'res2net50_26w_4s': 'https://shanghuagao.oss-cn-beijing.aliyuncs.com/res2net/res2net50_26w_4s-06e79181.pth',
'res2net50_48w_2s': 'https://shanghuagao.oss-cn-beijing.aliyuncs.com/res2net/res2net50_48w_2s-afed724a.pth',
'res2net50_14w_8s': 'https://shanghuagao.oss-cn-beijing.aliyuncs.com/res2net/res2net50_14w_8s-6527dddc.pth',
'res2net50_26w_6s': 'https://shanghuagao.oss-cn-beijing.aliyuncs.com/res2net/res2net50_26w_6s-19041792.pth',
'res2net50_26w_8s': 'https://shanghuagao.oss-cn-beijing.aliyuncs.com/res2net/res2net50_26w_8s-2c7c9f12.pth',
'res2net101_26w_4s': 'https://shanghuagao.oss-cn-beijing.aliyuncs.com/res2net/res2net101_26w_4s-02a759a1.pth',
}
class Bottle2neck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, baseWidth=26, scale = 4, stype='normal'):
""" Constructor
Args:
inplanes: input channel dimensionality
planes: output channel dimensionality
stride: conv stride. Replaces pooling layer.
downsample: None when stride = 1
baseWidth: basic width of conv3x3
scale: number of scale.
type: 'normal': normal set. 'stage': first block of a new stage.
"""
super(Bottle2neck, self).__init__()
width = int(math.floor(planes * (baseWidth/64.0)))
self.conv1 = nn.Conv2d(inplanes, width*scale, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(width*scale)
if scale == 1:
self.nums = 1
else:
self.nums = scale -1
if stype == 'stage':
self.pool = nn.AvgPool2d(kernel_size=3, stride = stride, padding=1)
convs = []
bns = []
for i in range(self.nums):
convs.append(nn.Conv2d(width, width, kernel_size=3, stride = stride, padding=1, bias=False))
bns.append(nn.BatchNorm2d(width))
self.convs = nn.ModuleList(convs)
self.bns = nn.ModuleList(bns)
self.conv3 = nn.Conv2d(width*scale, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stype = stype
self.scale = scale
self.width = width
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
spx = torch.split(out, self.width, 1)
for i in range(self.nums):
if i==0 or self.stype=='stage':
sp = spx[i]
else:
sp = sp + spx[i]
sp = self.convs[i](sp)
sp = self.relu(self.bns[i](sp))
if i==0:
out = sp
else:
out = torch.cat((out, sp), 1)
if self.scale != 1 and self.stype=='normal':
out = torch.cat((out, spx[self.nums]),1)
elif self.scale != 1 and self.stype=='stage':
out = torch.cat((out, self.pool(spx[self.nums])),1)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out