-
Notifications
You must be signed in to change notification settings - Fork 84
/
cfAppScript.sml
704 lines (648 loc) · 23.6 KB
/
cfAppScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
(*
App: [app] is used to give a specification for the application of a
value to one or multiple value arguments. It is in particular used
in cf to abstract from the concrete representation of closures.
*)
open preamble
open set_sepTheory helperLib semanticPrimitivesTheory
open cfHeapsBaseTheory cfHeapsTheory cfHeapsBaseLib cfStoreTheory cfNormaliseTheory
open cfTacticsBaseLib cfHeapsLib
val _ = new_theory "cfApp"
Type state = ``:'ffi semanticPrimitives$state``
Definition evaluate_ck_def:
evaluate_ck ck (st: 'ffi state) = evaluate (st with clock := ck)
End
Definition io_prefix_def:
io_prefix (s1:'ffi semanticPrimitives$state) (s2:'ffi semanticPrimitives$state) ⇔
(* TODO: update io_events to an llist and use LPREFIX instead of ≼ *)
s1.ffi.io_events ≼ s2.ffi.io_events
End
Definition evaluate_to_heap_def:
evaluate_to_heap st env exp p heap (r:res) <=>
case r of
| Val v => (∃ck st'. evaluate_ck ck st env [exp] = (st', Rval [v]) /\
st'.next_type_stamp = st.next_type_stamp /\
st'.next_exn_stamp = st.next_exn_stamp /\
st.fp_state = st'.fp_state /\
st2heap p st' = heap)
| Exn e => (∃ck st'. evaluate_ck ck st env [exp] = (st', Rerr (Rraise e)) /\
st'.next_type_stamp = st.next_type_stamp /\
st'.next_exn_stamp = st.next_exn_stamp /\
st.fp_state = st'.fp_state /\
st2heap p st' = heap)
| FFIDiv name conf bytes => (∃ck st'.
evaluate_ck ck st env [exp]
= (st', Rerr(Rabort(Rffi_error(Final_event (ExtCall name) conf bytes FFI_diverged)))) /\
st'.next_type_stamp = st.next_type_stamp /\
st'.next_exn_stamp = st.next_exn_stamp /\
st2heap p st' = heap)
| Div io => (* all clocks produce timeout *)
(∀ck. ∃st'. evaluate_ck ck st env [exp] =
(st', Rerr (Rabort Rtimeout_error))) /\
(* io is the limit of the io_events of all states *)
lprefix_lub (IMAGE (λck. fromList (FST(evaluate_ck ck st env [exp])).ffi.io_events)
UNIV)
io
End
(* [app_basic]: application with one argument *)
Definition app_basic_def:
app_basic (p:'ffi ffi_proj) (f: v) (x: v) (H: hprop) (Q: res -> hprop) =
!(h_i: heap) (h_k: heap) (st: 'ffi semanticPrimitives$state).
SPLIT (st2heap p st) (h_i, h_k) ==> H h_i ==>
?env exp (r: res) (h_f: heap) (h_g: heap) heap.
SPLIT3 heap (h_f, h_k, h_g) /\
do_opapp [f;x] = SOME (env, exp) /\
Q r h_f /\ evaluate_to_heap st env exp p heap r
End
Triviality app_basic_local:
!f x. is_local (app_basic p f x)
Proof
simp [is_local_def] \\ rpt strip_tac \\
irule EQ_EXT \\ qx_gen_tac `H` \\ irule EQ_EXT \\ qx_gen_tac `Q` \\
eq_tac \\ fs [local_elim] \\
simp [local_def] \\ strip_tac \\ simp [app_basic_def] \\ rpt strip_tac \\
first_assum progress \\
qpat_assum `(H1 * H2) h_i` (strip_assume_tac o REWRITE_RULE [STAR_def]) \\
fs [] \\ rename1 `H1 h_i_1` \\ rename1 `H2 h_i_2` \\
qpat_assum `app_basic _ _ _ _ _` (mp_tac o REWRITE_RULE [app_basic_def]) \\
disch_then (qspecl_then [`h_i_1`, `h_k UNION h_i_2`, `st`] mp_tac) \\
impl_tac THEN1 SPLIT_TAC \\ disch_then progress \\
rename1 `Q1 r' h_f_1` \\
qpat_x_assum `_ ==+> _` mp_tac \\
disch_then (mp_tac o REWRITE_RULE [SEP_IMPPOST_def, STARPOST_def]) \\
disch_then (mp_tac o REWRITE_RULE [SEP_IMP_def]) \\
disch_then (qspecl_then [`r'`, `h_f_1 UNION h_i_2`] mp_tac) \\ simp [] \\
impl_tac
THEN1 (simp [STAR_def] \\ Q.LIST_EXISTS_TAC [`h_f_1`, `h_i_2`] \\ SPLIT_TAC) \\
disch_then (assume_tac o REWRITE_RULE [STAR_def]) \\ fs [] \\
instantiate \\ rename1 `GC h_g'` \\ qexists_tac `h_g' UNION h_g` \\
SPLIT_TAC
QED
(* [app]: n-ary application *)
Definition app_def:
app (p:'ffi ffi_proj) (f: v) ([]: v list) (H: hprop) (Q: res -> hprop) = F /\
app (p:'ffi ffi_proj) f [x] H Q = app_basic p f x H Q /\
app (p:'ffi ffi_proj) f (x::xs) H Q =
app_basic p f x H
(POSTv g. SEP_EXISTS H'. H' * cond (app p g xs H' Q))
End
Theorem app_alt_ind:
!f xs x H Q.
xs <> [] ==>
app (p:'ffi ffi_proj) f (xs ++ [x]) H Q =
app (p:'ffi ffi_proj) f xs H
(POSTv g. SEP_EXISTS H'. H' * cond (app_basic p g x H' Q))
Proof
Induct_on `xs` \\ fs [] \\ rpt strip_tac \\
Cases_on `xs` \\ fs [app_def]
QED
Theorem app_alt_ind_w:
!f xs x H Q.
app (p:'ffi ffi_proj) f (xs ++ [x]) H Q ==> xs <> [] ==>
app (p:'ffi ffi_proj) f xs H
(POSTv g. SEP_EXISTS H'. H' * cond (app_basic (p:'ffi ffi_proj) g x H' Q))
Proof
rpt strip_tac \\ fs [app_alt_ind]
QED
Theorem app_ge_2_unfold:
!f x xs H Q.
xs <> [] ==>
app (p:'ffi ffi_proj) f (x::xs) H Q =
app_basic p f x H (POSTv g. SEP_EXISTS H'. H' * cond (app p g xs H' Q))
Proof
rpt strip_tac \\ Cases_on `xs` \\ fs [app_def]
QED
Theorem app_ge_2_unfold_extens:
!f x xs.
xs <> [] ==>
app (p:'ffi ffi_proj) f (x::xs) =
\H Q. app_basic p f x H (POSTv g. SEP_EXISTS H'. H' * cond (app p g xs H' Q))
Proof
rpt strip_tac \\ NTAC 2 (irule EQ_EXT \\ gen_tac) \\ fs [app_ge_2_unfold]
QED
(* Weaken-frame-gc for [app]; auxiliary lemma for [app_local] *)
Theorem app_wgframe:
!f xs H H1 H2 Q1 Q.
app (p:'ffi ffi_proj) f xs H1 Q1 ==>
H ==>> (H1 * H2) ==>
(Q1 *+ H2) ==+> (Q *+ GC) ==>
app p f xs H Q
Proof
NTAC 2 gen_tac \\ Q.SPEC_TAC (`f`, `f`) \\
Induct_on `xs` THEN1 (fs [app_def]) \\ rpt strip_tac \\ rename1 `x::xs` \\
Cases_on `xs = []`
THEN1 (
fs [app_def] \\ irule local_frame_gc \\ rpt conj_tac
THEN1 fs [app_basic_local] \\
instantiate
)
THEN1 (
fs [app_ge_2_unfold] \\ irule local_frame \\ rpt conj_tac
THEN1 (fs [app_basic_local]) \\
instantiate \\ simp [SEP_IMPPOST_def, STARPOST_def] \\ qx_gen_tac `r` \\
Cases_on `r` \\ simp [POSTv_def] \\ hpull \\ hsimpl \\
qx_gen_tac `HR` \\ strip_tac \\ qexists_tac `HR * H2` \\ hsimpl \\
first_assum irule \\ instantiate \\ hsimpl
)
QED
Theorem app_weaken:
!f xs H Q Q'.
app (p:'ffi ffi_proj) f xs H Q ==>
Q ==+> Q' ==>
app p f xs H Q'
Proof
rpt strip_tac \\ irule app_wgframe \\ instantiate \\ fs [SEP_IMPPOST_def] \\
rpt (hsimpl \\ TRY hinst) \\ simp [GC_def] \\ hsimpl \\
gen_tac \\ qexists_tac `emp` \\ hsimpl \\ fs []
QED
Theorem app_local:
!f xs. xs <> [] ==> is_local (app (p:'ffi ffi_proj) f xs)
Proof
rpt strip_tac \\ irule is_local_prove \\ rpt strip_tac \\
Cases_on `xs` \\ fs [] \\ rename1 `x1::xs` \\
Cases_on `xs` \\ fs []
THEN1 (
`!x. app p f [x] = app_basic p f x` by
(gen_tac \\ NTAC 2 (irule EQ_EXT \\ gen_tac) \\ fs [app_def]) \\
fs [Once (REWRITE_RULE [is_local_def] app_basic_local)]
)
THEN1 (
rename1 `x1::x2::xs` \\ simp [app_ge_2_unfold_extens] \\
eq_tac \\ strip_tac THEN1 (irule local_elim \\ fs []) \\
simp [Once (REWRITE_RULE [is_local_def] app_basic_local)] \\
fs [local_def] \\ rpt strip_tac \\ first_x_assum progress \\
rename1 `(H1 * H2) h` \\ instantiate \\ simp [SEP_IMPPOST_def] \\
Cases \\ simp [STARPOST_def, POSTv_def] \\ hsimpl \\
qx_gen_tac `H'` \\ strip_tac \\ qexists_tac `H' * H2` \\ hsimpl \\
irule app_wgframe \\ instantiate \\ hsimpl
)
QED
(* [curried (p:'ffi ffi_proj) n f] states that [f] is curried [n] times *)
Definition curried_def:
curried (p:'ffi ffi_proj) (n: num) (f: v) =
case n of
| 0 => F
| SUC 0 => T
| SUC n =>
!x. app_basic (p:'ffi ffi_proj) f x emp
(POSTv g. cond (curried (p:'ffi ffi_proj) n g /\
!xs H Q.
LENGTH xs = n ==>
app (p:'ffi ffi_proj) f (x::xs) H Q ==>
app (p:'ffi ffi_proj) g xs H Q))
End
Theorem curried_ge_2_unfold:
!n f.
n > 1 ==>
curried (p:'ffi ffi_proj) n f =
!x. app_basic p f x emp
(POSTv g. cond (curried p (PRE n) g /\
!xs H Q.
LENGTH xs = PRE n ==>
app p f (x::xs) H Q ==> app p g xs H Q))
Proof
rpt strip_tac \\ Cases_on `n` \\ fs [] \\ rename1 `SUC n > 1` \\
Cases_on `n` \\ fs [Once curried_def]
QED
Theorem app_basic_SEP_EXISTS:
app_basic p f h (SEP_EXISTS x. P x) q ⇔ ∀x. app_basic p f h (P x) q
Proof
fs [app_basic_def,SEP_EXISTS_THM,PULL_EXISTS] \\ metis_tac []
QED
Theorem app_SEP_EXISTS:
∀args p f q P.
app p f args (SEP_EXISTS x. P x) q ⇔ ∀x. app p f args (P x) q
Proof
strip_tac \\ completeInduct_on ‘LENGTH args’
\\ rw [] \\ gvs [PULL_FORALL]
\\ Cases_on ‘args’ \\ fs [app_def]
\\ Cases_on ‘t’ \\ fs [app_def]
THEN1 (fs [app_basic_def,SEP_EXISTS_THM,PULL_EXISTS] \\ metis_tac [])
\\ eq_tac \\ rw []
\\ fs [app_basic_SEP_EXISTS]
QED
(* app_over_app / app_over_take *)
(** When [curried n f] holds and the number of the arguments [xs] is less than
[n], then [app f xs] is a function [g] such that [app g ys] has the same
behavior as [app f (xs++ys)]. *)
(*
val app_partial = Q.prove (
`!n xs f. curried (p:'ffi ffi_proj) n f ==> (0 < LENGTH xs /\ LENGTH xs < n) ==>
app (p:'ffi ffi_proj) f xs emp (\g. cond (
curried (p:'ffi ffi_proj) (n - LENGTH xs) g /\
!ys H Q. (LENGTH xs + LENGTH ys = n) ==>
app (p:'ffi ffi_proj) f (xs ++ ys) H Q ==> app (p:'ffi ffi_proj) g ys H Q))`,
completeInduct_on `n` \\ Cases_on `n`
THEN1 (rpt strip_tac \\ fs [])
THEN1 (
Cases_on `xs` \\ rpt strip_tac \\ fs [] \\
rename1 `x::zs` \\ rename1 `LENGTH zs < n` \\
Cases_on `zs` \\ fs []
THEN1 (
(* xs = x :: zs = [x] *)
fs [app_def] \\ ...
)
THEN1 (
(* xs = x :: zs = [x::y::t] *)
rename1 `x::y::t` \\ fs [app_def] \\ ..
)
)
)
*)
(*------------------------------------------------------------------*)
(** Packaging *)
(* [spec (p:'ffi ffi_proj) f n P] asserts that [curried (p:'ffi ffi_proj) f n] is true and
that [P] is a valid specification for [f]. Useful for conciseness and
tactics. *)
Definition spec_def:
spec (p:'ffi ffi_proj) f n P = (curried (p:'ffi ffi_proj) n f /\ P)
End
(*------------------------------------------------------------------*)
(* Relating [app] to [_ --> _] from the translator *)
Theorem app_basic_weaken:
(!x v. P x v ==> Q x v) ==>
(app_basic p v v1 x P ==>
app_basic p v v1 x Q)
Proof
fs [app_basic_def] \\ metis_tac []
QED
(* TODO: move to appropriate locations *)
Theorem FFI_part_NOT_IN_store2heap:
FFI_part x1 x2 x3 x4 ∉ store2heap refs
Proof
rw[store2heap_def,FFI_part_NOT_IN_store2heap_aux]
QED
Theorem FFI_full_NOT_IN_store2heap:
FFI_full x1 ∉ store2heap refs
Proof
rw[store2heap_def,FFI_full_NOT_IN_store2heap_aux]
QED
Theorem FFI_split_NOT_IN_store2heap:
FFI_split ∉ store2heap refs
Proof
rw[store2heap_def,FFI_split_NOT_IN_store2heap_aux]
QED
Theorem store2heap_aux_MAPi:
∀n s. store2heap_aux n s = set (MAPi (λi v. Mem (n+i) v) s)
Proof
Induct_on`s`
\\ rw[store2heap_aux_def,o_DEF,ADD1]
\\ rpt (AP_TERM_TAC ORELSE AP_THM_TAC)
\\ rw[FUN_EQ_THM]
QED
Theorem store2heap_MAPi:
store2heap s = set (MAPi Mem s)
Proof
rw[store2heap_def,store2heap_aux_MAPi]
\\ srw_tac[ETA_ss][]
QED
Theorem store2heap_aux_append_many:
∀s n x.
store2heap_aux n (s ++ x) =
store2heap_aux (n + LENGTH s) x ∪ store2heap_aux n s
Proof
Induct \\ rw[store2heap_aux_def,ADD1,EXTENSION]
\\ metis_tac[]
QED
Theorem store2heap_append_many:
∀s x.
store2heap (s ++ x) = store2heap s ∪ store2heap_aux (LENGTH s) x
Proof
rw[store2heap_def,store2heap_aux_append_many,UNION_COMM]
QED
Theorem st2heap_with_refs_append:
st2heap p (st with refs := r1 ++ r2) =
st2heap p (st with refs := r1) ∪ store2heap_aux (LENGTH r1) r2
Proof
rw[st2heap_def,store2heap_append_many]
\\ metis_tac[UNION_COMM,UNION_ASSOC]
QED
Theorem POSTv_cond:
(POSTv v. &f v) r h ⇔ ∃v. r = Val v ∧ f v ∧ h = ∅
Proof
rw[POSTv_def]
\\ Cases_on`r` \\ fs[cond_def,EQ_IMP_THM]
QED
open evaluateTheory evaluatePropsTheory
val dec_clock_def = evaluateTheory.dec_clock_def
val evaluate_empty_state_IMP = ml_translatorTheory.evaluate_empty_state_IMP
Theorem SPLIT_st2heap_length_leq:
SPLIT (st2heap p s') (st2heap p s, h_g) ∧
LENGTH s.refs ≤ LENGTH s'.refs ∧ s'.ffi = s.ffi ⇒
s.refs ≼ s'.refs
Proof
rw[SPLIT_def,st2heap_def]
\\ `store2heap s'.refs = store2heap s.refs ∪ h_g` by (
fs[EXTENSION]
\\ reverse Cases \\ fs[FFI_part_NOT_IN_store2heap]
\\ fs[IN_DISJOINT]
\\ metis_tac[Mem_NOT_IN_ffi2heap,FFI_part_NOT_IN_store2heap,
FFI_split_NOT_IN_store2heap,
FFI_full_NOT_IN_store2heap])
\\ fs[IS_PREFIX_APPEND]
\\ qexists_tac`DROP (LENGTH s.refs) s'.refs`
\\ simp[LIST_EQ_REWRITE]
\\ qx_gen_tac`n` \\ strip_tac
\\ reverse(Cases_on`n < LENGTH s.refs`)
>- ( simp[EL_APPEND2,EL_DROP] )
\\ simp[EL_APPEND1]
\\ fs[store2heap_MAPi,EXTENSION,MEM_MAPi]
\\ first_x_assum(qspec_then`Mem n (EL n s.refs)`mp_tac)
\\ simp[]
QED
Triviality forall_cases:
(!x. P x) <=> (!x1 x2. P (Mem x1 x2)) /\
(P FFI_split) /\
(!x3 x4 x2 x1. P (FFI_part x1 x2 x3 x4)) /\
(!x1. P (FFI_full x1))
Proof
EQ_TAC \\ rw [] \\ Cases_on `x` \\ fs []
QED
Triviality SPLIT_UNION_IMP_SUBSET:
SPLIT x (y UNION y1,y2) ==> y1 SUBSET x
Proof
SPLIT_TAC
QED
Triviality FILTER_ffi_has_index_in_EQ_NIL:
~(MEM n xs) /\ EVERY (ffi_has_index_in xs) ys ==>
FILTER (ffi_has_index_in [n]) ys = []
Proof
Induct_on `ys` \\ fs [] \\ rw [] \\ fs []
\\ Cases_on `h` \\ Cases_on `f`
\\ fs [ffi_has_index_in_def] \\ rw []
\\ CCONTR_TAC \\ fs [] \\ fs [ffi_has_index_in_def]
QED
Triviality FILTER_ffi_has_index_in_MEM:
!ys zs xs x.
MEM x xs /\
FILTER (ffi_has_index_in xs) ys = FILTER (ffi_has_index_in xs) zs ==>
FILTER (ffi_has_index_in [x]) ys = FILTER (ffi_has_index_in [x]) zs
Proof
once_rewrite_tac [EQ_SYM_EQ] \\ Induct \\ fs [] THEN1
(fs [listTheory.FILTER_EQ_NIL] \\ fs [EVERY_MEM] \\ rw []
\\ res_tac \\ Cases_on `x'` \\ Cases_on `f`
\\ fs [ffi_has_index_in_def]
\\ CCONTR_TAC \\ fs [])
\\ rpt strip_tac
\\ reverse (Cases_on `ffi_has_index_in xs h` \\ fs [])
THEN1
(`~ffi_has_index_in [x] h` by
(Cases_on `h` \\ Cases_on `f` \\ fs [ffi_has_index_in_def] \\ CCONTR_TAC \\ fs [])
\\ fs [] \\ metis_tac [])
\\ IF_CASES_TAC \\ fs []
\\ fs [FILTER_EQ_CONS]
THEN1
(qexists_tac `l1` \\ qexists_tac `l2` \\ fs [] \\ rveq \\ fs []
\\ fs [listTheory.FILTER_EQ_NIL] \\ fs [EVERY_MEM]
\\ reverse conj_tac
THEN1 (first_x_assum match_mp_tac \\ fs [] \\ asm_exists_tac \\ fs [])
\\ rw [] \\ res_tac
\\ Cases_on `x'` \\ Cases_on `f`
\\ fs [ffi_has_index_in_def]
\\ CCONTR_TAC \\ fs [])
\\ fs [FILTER_APPEND]
\\ fs [GSYM FILTER_APPEND]
\\ first_x_assum match_mp_tac \\ fs [] \\ asm_exists_tac \\ fs []
\\ fs [FILTER_APPEND]
QED
Triviality LENGTH_FILTER_EQ_IMP_EMPTY:
!xs l.
(!io_ev. MEM io_ev l ==>
?s bs bs'. io_ev = IO_event (ExtCall s) bs bs') /\
(∀n. LENGTH (FILTER (ffi_has_index_in [n]) (xs ++ l)) =
LENGTH (FILTER (ffi_has_index_in [n]) xs)) ==>
l = []
Proof
Induct THEN1
(rw[] \\ Cases_on `l` \\ fs []
\\ Cases_on `h` \\ Cases_on `f`
\\ fs [ffi_has_index_in_def]
>- (first_x_assum $ qspec_then `s` assume_tac \\ fs[])
\\ last_x_assum mp_tac \\ gvs[]
\\ irule_at (Pos hd) OR_INTRO_THM1
\\ simp[])
\\ rpt gen_tac
\\ rpt strip_tac
\\ last_x_assum irule
\\ rw[]
\\ pop_assum $ qspec_then `n` assume_tac
\\ Cases_on `ffi_has_index_in [n] h`
\\ fs[LENGTH]
QED
Triviality IN_DISJOINT_LEMMA1:
!s. x IN h_g /\ DISJOINT s h_g ==> ~(x IN s)
Proof
SPLIT_TAC
QED
Triviality FFI_part_EXISTS:
parts_ok s1 (p0,p1) /\ parts_ok s2 (p0,p1) /\
FFI_part x1 x2 x3 x4 ∈ ffi2heap (p0,p1) s1 ==>
?y1 y2 y4. FFI_part y1 y2 x3 y4 ∈ ffi2heap (p0,p1) s2
Proof
strip_tac \\ rfs [ffi2heap_def] \\ asm_exists_tac \\ fs []
\\ fs [parts_ok_def] \\ metis_tac []
QED
Triviality ALL_DISTINCT_FLAT_MEM_IMP:
!p1 x x2 y2.
ALL_DISTINCT (FLAT (MAP FST p1)) /\ x <> [] /\
MEM (x,x2) p1 /\ MEM (x,y2) p1 ==> x2 = y2
Proof
Induct \\ fs [] \\ Cases \\ fs [ALL_DISTINCT_APPEND]
\\ rw [] \\ res_tac \\ rveq
\\ Cases_on `MEM (q,r) p1` \\ fs [] \\ res_tac
\\ fs [MEM_FLAT,MEM_MAP,FORALL_PROD]
\\ Cases_on `q` \\ fs []
\\ metis_tac [MEM]
QED
Triviality FFI_part_11:
parts_ok s1 (p0,p1) /\ parts_ok s2 (p0,p1) /\
FFI_part x1 x2 x3 x4 ∈ ffi2heap (p0,p1) s1 /\
FFI_part y1 y2 x3 y4 ∈ ffi2heap (p0,p1) s1 ==>
x1 = y1 /\ x2 = y2 /\ x4 = y4
Proof
strip_tac \\ rfs [ffi2heap_def]
\\ Cases_on `x3` \\ fs [] \\ fs [parts_ok_def]
\\ imp_res_tac ALL_DISTINCT_FLAT_MEM_IMP \\ fs []
QED
Theorem SPLIT_st2heap_ffi:
SPLIT (st2heap p st') (st2heap p st, h_g) ⇒
!n. FILTER (ffi_has_index_in [n]) st'.ffi.io_events =
FILTER (ffi_has_index_in [n]) st.ffi.io_events
Proof
PairCases_on `p` \\ strip_tac
\\ reverse (Cases_on `parts_ok st.ffi (p0,p1) = parts_ok st'.ffi (p0,p1)`)
THEN1
(reverse (Cases_on `parts_ok st.ffi (p0,p1)`)
\\ fs [ffi2heap_def,st2heap_def]
THEN1
(fs [SPLIT_def] \\ fs [EXTENSION] \\ fs [st2heap_def]
\\ qpat_x_assum `!x._` (assume_tac o GSYM)
\\ fs [forall_cases,FFI_full_NOT_IN_store2heap,FFI_part_NOT_IN_store2heap]
\\ fs [Mem_NOT_IN_ffi2heap] \\ metis_tac [])
\\ drule SPLIT_UNION_IMP_SUBSET
\\ fs [SUBSET_DEF,PULL_EXISTS,FFI_split_NOT_IN_store2heap])
\\ fs [SPLIT_def] \\ fs [EXTENSION] \\ fs [st2heap_def]
\\ qpat_x_assum `!x._` (assume_tac o GSYM)
\\ fs [forall_cases,FFI_full_NOT_IN_store2heap,FFI_part_NOT_IN_store2heap]
\\ fs [Mem_NOT_IN_ffi2heap]
\\ reverse (Cases_on `parts_ok st.ffi (p0,p1)`) \\ fs [] THEN1
(fs [ffi2heap_def]
\\ first_x_assum (qspecl_then [`st.ffi.io_events`] mp_tac)
\\ fs [])
\\ rw []
\\ qpat_x_assum `!x1 x2. _ <=> _` kall_tac
\\ qpat_x_assum `!x1. _ <=> _` kall_tac
\\ qpat_x_assum `_ <=> _` kall_tac
\\ `∀x3 x4 x2 x1.
FFI_part x1 x2 x3 x4 ∈ ffi2heap (p0,p1) st'.ffi ⇔
FFI_part x1 x2 x3 x4 ∈ ffi2heap (p0,p1) st.ffi` by
(rw [] \\ eq_tac \\ rw []
\\ `FFI_part x1 x2 x3 x4 ∈ ffi2heap (p0,p1) st'.ffi` by metis_tac []
\\ `?y1 y2 y4. FFI_part y1 y2 x3 y4 ∈ ffi2heap (p0,p1) st.ffi` by
metis_tac [FFI_part_EXISTS]
\\ `FFI_part y1 y2 x3 y4 ∈ ffi2heap (p0,p1) st'.ffi` by metis_tac []
\\ `x1 = y1 /\ x2 = y2 /\ x4 = y4` by metis_tac [FFI_part_11]
\\ rveq \\ fs [] \\ NO_TAC)
\\ pop_assum mp_tac \\ qpat_x_assum `!x. _` kall_tac \\ rw []
\\ fs [ffi2heap_def] \\ rfs []
\\ fs [parts_ok_def]
\\ reverse (Cases_on `MEM n ((FLAT (MAP FST p1)))`)
THEN1 (imp_res_tac FILTER_ffi_has_index_in_EQ_NIL \\ fs [])
\\ fs [MEM_FLAT,MEM_MAP]
\\ rpt var_eq_tac
\\ PairCases_on `y` \\ fs []
\\ qpat_x_assum `∀ns u. _ ==> _` mp_tac
\\ qpat_assum `!x1 x2. _ ==> _` drule
\\ strip_tac
\\ first_assum (qspecl_then [`y0`,
`FILTER (ffi_has_index_in y0) st'.ffi.io_events`,`y1`,`s`] mp_tac)
\\ `y0 <> []` by (CCONTR_TAC \\ fs [])
\\ rewrite_tac [] \\ simp []
\\ strip_tac
\\ rpt strip_tac
\\ match_mp_tac FILTER_ffi_has_index_in_MEM
\\ fs [] \\ asm_exists_tac \\ fs []
QED
Theorem Arrow_IMP_app_basic:
(Arrow a b) f v ==>
!x v1.
a x v1 ==>
app_basic (p:'ffi ffi_proj) v v1 emp (POSTv v. &b (f x) v)
Proof
fs [app_basic_def,emp_def,cfHeapsBaseTheory.SPLIT_emp1,
ml_translatorTheory.Arrow_def,ml_translatorTheory.AppReturns_def,PULL_EXISTS]
\\ fs [evaluate_ck_def, evaluate_to_heap_def] \\ rw []
\\ first_x_assum drule \\ strip_tac
\\ first_x_assum (qspec_then`st.refs`strip_assume_tac)
\\ instantiate
\\ drule evaluate_empty_state_IMP \\ strip_tac
\\ fs [ml_progTheory.eval_rel_def]
\\ rename1 `evaluate (st with clock := ck) _ _ = _`
\\ simp[POSTv_cond,PULL_EXISTS]
\\ instantiate
\\ fs[st2heap_clock]
\\ fs[SPLIT3_emp1]
\\ fs[st2heap_with_refs_append]
\\ `st with refs := st.refs = st` by fs[state_component_equality]
\\ pop_assum SUBST_ALL_TAC
\\ qexists_tac`store2heap_aux (LENGTH st.refs) refs'`
\\ fs[SPLIT_def]
\\ fs[IN_DISJOINT]
\\ Cases \\ fs[FFI_split_NOT_IN_store2heap_aux,
FFI_part_NOT_IN_store2heap_aux,
FFI_full_NOT_IN_store2heap_aux,
st2heap_def,Mem_NOT_IN_ffi2heap]
\\ spose_not_then strip_assume_tac
\\ imp_res_tac store2heap_IN_LENGTH
\\ imp_res_tac store2heap_aux_IN_bound
\\ decide_tac
QED
Theorem do_app_io_events_ExtCall:
do_app (refs,ffi) op vs = SOME ((refs',ffi'),r) ==>
?l. ffi'.io_events = ffi.io_events ++ l /\
!io_ev. MEM io_ev l ==>
?s bs bs'. io_ev = IO_event (ExtCall s) bs bs'
Proof
strip_tac >>
gvs[DefnBase.one_line_ify NONE do_app_def,
AllCaseEqs(),ffiTheory.call_FFI_def] >>
pairarg_tac >> fs[]
QED
Theorem evaluate_ExtCall:
(!(st:'ffi semanticPrimitives$state) env exp l io_ev.
!st' res. evaluate st env exp = (st',res) /\
st'.ffi.io_events = st.ffi.io_events ++ l /\
MEM io_ev l ==>
?s bs bs'.
io_ev = IO_event (ExtCall s) bs bs') /\
(!(st:'ffi semanticPrimitives$state) env v pes err_v st' res l io_ev.
evaluate_match st env v pes err_v = (st',res) /\
st'.ffi.io_events = st.ffi.io_events ++ l /\
MEM io_ev l ==>
?s bs bs'.
io_ev = IO_event (ExtCall s) bs bs') /\
(!(st:'ffi semanticPrimitives$state) env d st' res l io_ev.
evaluate_decs st env d = (st',res) /\
st'.ffi.io_events = st.ffi.io_events ++ l /\
MEM io_ev l ==>
?s bs bs'.
io_ev = IO_event (ExtCall s) bs bs')
Proof
ho_match_mp_tac full_evaluate_ind >>
rw[] >>
gvs[evaluate_def,AllCaseEqs(),evaluate_decs_def] >>
imp_res_tac $ cj 1 evaluate_history_irrelevance >>
imp_res_tac $ cj 2 evaluate_history_irrelevance >>
imp_res_tac $ cj 3 evaluate_history_irrelevance >>
imp_res_tac do_app_io_events_ExtCall >>
rpt strip_tac >>
gvs[do_eval_res_def,AllCaseEqs(),dec_clock_def,
shift_fp_opts_def]
QED
Theorem app_basic_IMP_Arrow:
(∀x v1. a x v1 ⇒ app_basic p v v1 emp (POSTv v. cond (b (f x) v))) ⇒
Arrow a b f v
Proof
rw[app_basic_def,ml_translatorTheory.Arrow_def,
ml_translatorTheory.AppReturns_def,emp_def,SPLIT_emp1,evaluate_to_heap_def]
\\ first_x_assum drule
\\ fs[evaluate_ck_def]
\\ fs[POSTv_cond,SPLIT3_emp1,PULL_EXISTS]
\\ disch_then( qspec_then`empty_state with <| refs := refs; ffi := ffi_st_x; fp_state := empty_state.fp_state|>` mp_tac)
\\ rw [] \\ instantiate
\\ rename1 `SPLIT (st2heap p st1) _`
\\ drule_then (qspec_then `empty_state with <| clock := ck ;refs := refs |>` mp_tac)
(INST_TYPE [beta |-> ``:'z``] evaluate_ffi_etc_intro)
\\ simp [EVAL ``empty_state.eval_state``]
\\ qsuff_tac `?refs1. st1.refs = refs ++ refs1 /\
st1.ffi = ffi_st_x`
THEN1
(fs [ml_progTheory.eval_rel_def] \\ rw []
\\ qexists_tac `refs1`
\\ qexists_tac `ck1` \\ fs [state_component_equality])
\\ imp_res_tac evaluate_refs_length_mono \\ fs []
\\ imp_res_tac evaluate_io_events_mono_imp
\\ fs[io_events_mono_def]
\\ simp [GSYM PULL_EXISTS]
\\ conj_asm2_tac
THEN1 (drule SPLIT_st2heap_length_leq \\ fs [IS_PREFIX_APPEND])
\\ imp_res_tac SPLIT_st2heap_ffi \\ fs []
\\ qmatch_assum_rename_tac `!n. FILTER (ffi_has_index_in [n]) _ =
FILTER (ffi_has_index_in [n]) st2.io_events`
\\ gvs[IS_PREFIX_APPEND]
\\ first_x_assum irule
\\ irule LENGTH_FILTER_EQ_IMP_EMPTY
\\ rw[]
>- (
drule_then irule $ cj 1 evaluate_ExtCall >>
simp[]
) >>
metis_tac[]
QED
(* use evaluate to prove st1.io_events = st2.io_events ++ [ExtCall...] *)
Theorem Arrow_eq_app_basic:
Arrow a b f fv ⇔ (∀x xv. a x xv ⇒ app_basic p fv xv emp (POSTv v'. &b (f x) v'))
Proof
metis_tac[GEN_ALL Arrow_IMP_app_basic, GEN_ALL app_basic_IMP_Arrow]
QED
val _ = export_theory ()