-
Notifications
You must be signed in to change notification settings - Fork 84
/
namespaceScript.sml
122 lines (97 loc) · 2.78 KB
/
namespaceScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
(*
Defines a datatype for nested namespaces where names can be either
short (e.g. foo) or long (e.g. ModuleA.InnerB.bar).
*)
open HolKernel Parse boolLib bossLib;
val _ = numLib.temp_prefer_num();
local open alistTheory in end;
val _ = new_theory "namespace"
val _ = set_grammar_ancestry ["alist"];
Type alist = ``: ('k # 'v) list``
(* Identifiers *)
Datatype:
id = Short 'n | Long 'm id
End
Definition mk_id_def:
mk_id [] n = Short n ∧
mk_id (mn::mns) n = Long mn (mk_id mns n)
End
Definition id_to_n_def:
id_to_n (Short n) = n ∧
id_to_n (Long _ id) = id_to_n id
End
Definition id_to_mods_def:
id_to_mods (Short _) = [] ∧
id_to_mods (Long mn id) = mn::id_to_mods id
End
Datatype:
namespace =
Bind (('n,'v) alist) (('m,namespace) alist)
End
Definition nsLookup_def:
nsLookup ((Bind v m):('m,'n,'v)namespace) (Short n) =
ALOOKUP v n ∧
nsLookup (Bind v m) (Long mn id) =
case ALOOKUP m mn of
| NONE => NONE
| SOME env => nsLookup env id
End
Definition nsLookupMod_def:
nsLookupMod e [] = SOME (e:('m,'n,'v)namespace) ∧
nsLookupMod (Bind v m) (mn::path) =
case ALOOKUP m mn of NONE => NONE | SOME env => nsLookupMod env path
End
Definition nsEmpty_def:
nsEmpty = Bind [] []
End
Definition nsAppend_def:
nsAppend (Bind v1 m1) (Bind v2 m2) = Bind (v1 ++ v2) (m1 ++ m2)
End
Definition nsLift_def:
nsLift mn env = Bind [] [(mn,env)]
End
Definition alist_to_ns_def:
alist_to_ns a = Bind a []
End
Definition nsBind_def:
nsBind k x (Bind v m) = Bind ((k,x)::v) m
End
Definition nsBindList_def:
nsBindList l e = FOLDR (λ(x,v) e. nsBind x v e) e l
End
Definition nsOptBind_def:
nsOptBind n x env = case n of NONE => env | SOME n => nsBind n x env
End
Definition nsSing_def:
nsSing n x = Bind [(n,x)] []
End
Definition nsSub_def:
nsSub r env1 env2 ⇔
(∀id v1.
nsLookup env1 id = SOME v1 ⇒
∃v2. nsLookup env2 id = SOME v2 ∧ r id v1 v2) ∧
∀path. nsLookupMod env2 path = NONE ⇒ nsLookupMod env1 path = NONE
End
Definition nsAll_def:
nsAll f env ⇔ ∀id v. nsLookup env id = SOME v ⇒ f id v
End
Definition nsAll2_def:
nsAll2 r env1 env2 ⇔
nsSub r env1 env2 ∧ nsSub (λx y z. r x z y) env2 env1
End
Definition nsDom_def:
nsDom (env:('m,'n,'v)namespace) =
{n | (v,n) | v ∈ 𝕌(:φ) ∧ n ∈ 𝕌(:(ν, ξ) id) ∧ nsLookup env n = SOME v}
End
Definition nsDomMod_def:
nsDomMod (env:('m,'n,'v)namespace) =
{n | (v,n) | v ∈ 𝕌(:(ν, ξ, φ) namespace) ∧ n ∈ 𝕌(:ν list) ∧
nsLookupMod env n = SOME v}
End
Definition nsMap_def:
nsMap (f:'v -> 'w) ((Bind v m):('m,'n,'v)namespace) =
Bind (MAP (λ(n,x). (n,f x)) v) (MAP (λ(mn,e). (mn,nsMap f e)) m)
Termination
WF_REL_TAC `measure (namespace_size (K 1) (K 1) (K 1) o SND)`
End
val _ = export_theory()