forked from hustvl/YOLOP
-
Notifications
You must be signed in to change notification settings - Fork 2
/
test_onnx.py
172 lines (132 loc) · 5.64 KB
/
test_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import cv2
import torch
import argparse
import onnxruntime as ort
import numpy as np
from lib.core.general import non_max_suppression
def resize_unscale(img, new_shape=(640, 640), color=114):
shape = img.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
canvas = np.zeros((new_shape[0], new_shape[1], 3))
canvas.fill(color)
# Scale ratio (new / old) new_shape(h,w)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) # w,h
new_unpad_w = new_unpad[0]
new_unpad_h = new_unpad[1]
pad_w, pad_h = new_shape[1] - new_unpad_w, new_shape[0] - new_unpad_h # wh padding
dw = pad_w // 2 # divide padding into 2 sides
dh = pad_h // 2
if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_AREA)
canvas[dh:dh + new_unpad_h, dw:dw + new_unpad_w, :] = img
return canvas, r, dw, dh, new_unpad_w, new_unpad_h # (dw,dh)
def infer_yolop(weight="yolop-640-640.onnx",
img_path="./inference/images/7dd9ef45-f197db95.jpg"):
ort.set_default_logger_severity(4)
onnx_path = f"./weights/{weight}"
ort_session = ort.InferenceSession(onnx_path)
print(f"Load {onnx_path} done!")
outputs_info = ort_session.get_outputs()
inputs_info = ort_session.get_inputs()
for ii in inputs_info:
print("Input: ", ii)
for oo in outputs_info:
print("Output: ", oo)
print("num outputs: ", len(outputs_info))
save_det_path = f"./pictures/detect_onnx.jpg"
save_da_path = f"./pictures/da_onnx.jpg"
save_ll_path = f"./pictures/ll_onnx.jpg"
save_merge_path = f"./pictures/output_onnx.jpg"
img_bgr = cv2.imread(img_path)
height, width, _ = img_bgr.shape
# convert to RGB
img_rgb = img_bgr[:, :, ::-1].copy()
# resize & normalize
canvas, r, dw, dh, new_unpad_w, new_unpad_h = resize_unscale(img_rgb, (640, 640))
img = canvas.copy().astype(np.float32) # (3,640,640) RGB
img /= 255.0
img[:, :, 0] -= 0.485
img[:, :, 1] -= 0.456
img[:, :, 2] -= 0.406
img[:, :, 0] /= 0.229
img[:, :, 1] /= 0.224
img[:, :, 2] /= 0.225
img = img.transpose(2, 0, 1)
img = np.expand_dims(img, 0) # (1, 3,640,640)
# inference: (1,n,6) (1,2,640,640) (1,2,640,640)
det_out, da_seg_out, ll_seg_out = ort_session.run(
['det_out', 'drive_area_seg', 'lane_line_seg'],
input_feed={"images": img}
)
det_out = torch.from_numpy(det_out).float()
boxes = non_max_suppression(det_out)[0] # [n,6] [x1,y1,x2,y2,conf,cls]
boxes = boxes.cpu().numpy().astype(np.float32)
if boxes.shape[0] == 0:
print("no bounding boxes detected.")
return
# scale coords to original size.
boxes[:, 0] -= dw
boxes[:, 1] -= dh
boxes[:, 2] -= dw
boxes[:, 3] -= dh
boxes[:, :4] /= r
print(f"detect {boxes.shape[0]} bounding boxes.")
img_det = img_rgb[:, :, ::-1].copy()
for i in range(boxes.shape[0]):
x1, y1, x2, y2, conf, label = boxes[i]
x1, y1, x2, y2, label = int(x1), int(y1), int(x2), int(y2), int(label)
img_det = cv2.rectangle(img_det, (x1, y1), (x2, y2), (0, 255, 0), 2, 2)
cv2.imwrite(save_det_path, img_det)
# select da & ll segment area.
da_seg_out = da_seg_out[:, :, dh:dh + new_unpad_h, dw:dw + new_unpad_w]
ll_seg_out = ll_seg_out[:, :, dh:dh + new_unpad_h, dw:dw + new_unpad_w]
da_seg_mask = np.argmax(da_seg_out, axis=1)[0] # (?,?) (0|1)
ll_seg_mask = np.argmax(ll_seg_out, axis=1)[0] # (?,?) (0|1)
print(da_seg_mask.shape)
print(ll_seg_mask.shape)
color_area = np.zeros((new_unpad_h, new_unpad_w, 3), dtype=np.uint8)
color_area[da_seg_mask == 1] = [0, 255, 0]
color_area[ll_seg_mask == 1] = [255, 0, 0]
color_seg = color_area
# convert to BGR
color_seg = color_seg[..., ::-1]
color_mask = np.mean(color_seg, 2)
img_merge = canvas[dh:dh + new_unpad_h, dw:dw + new_unpad_w, :]
img_merge = img_merge[:, :, ::-1]
# merge: resize to original size
img_merge[color_mask != 0] = \
img_merge[color_mask != 0] * 0.5 + color_seg[color_mask != 0] * 0.5
img_merge = img_merge.astype(np.uint8)
img_merge = cv2.resize(img_merge, (width, height),
interpolation=cv2.INTER_LINEAR)
for i in range(boxes.shape[0]):
x1, y1, x2, y2, conf, label = boxes[i]
x1, y1, x2, y2, label = int(x1), int(y1), int(x2), int(y2), int(label)
img_merge = cv2.rectangle(img_merge, (x1, y1), (x2, y2), (0, 255, 0), 2, 2)
# da: resize to original size
da_seg_mask = da_seg_mask * 255
da_seg_mask = da_seg_mask.astype(np.uint8)
da_seg_mask = cv2.resize(da_seg_mask, (width, height),
interpolation=cv2.INTER_LINEAR)
# ll: resize to original size
ll_seg_mask = ll_seg_mask * 255
ll_seg_mask = ll_seg_mask.astype(np.uint8)
ll_seg_mask = cv2.resize(ll_seg_mask, (width, height),
interpolation=cv2.INTER_LINEAR)
cv2.imwrite(save_merge_path, img_merge)
cv2.imwrite(save_da_path, da_seg_mask)
cv2.imwrite(save_ll_path, ll_seg_mask)
print("detect done.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--weight', type=str, default="yolop-640-640.onnx")
parser.add_argument('--img', type=str, default="./inference/images/9aa94005-ff1d4c9a.jpg")
args = parser.parse_args()
infer_yolop(weight=args.weight, img_path=args.img)
"""
PYTHONPATH=. python3 ./test_onnx.py --weight yolop-640-640.onnx --img test.jpg
"""