Skip to content

Latest commit

 

History

History
123 lines (84 loc) · 5.17 KB

README.md

File metadata and controls

123 lines (84 loc) · 5.17 KB

mloptimizer_banner

Documentation Status PyPI version PyPI pyversions Tests Coverage Status Shield: Buy me a coffee

mloptimizer is a Python library for optimizing hyperparameters of machine learning algorithms using genetic algorithms. With mloptimizer, you can find the optimal set of hyperparameters for a given machine learning model and dataset, which can significantly improve the performance of the model. The library supports several popular machine learning algorithms, including decision trees, random forests, and gradient boosting classifiers. The genetic algorithm used in mloptimizer provides an efficient and flexible approach to search for the optimal hyperparameters in a large search space.

Features

  • Easy to use
  • DEAP-based genetic algorithm ready to use with several machine learning algorithms
  • Adaptable to use with any machine learning algorithm that complies with the Scikit-Learn API
  • Default hyperparameter ranges
  • Default score functions for evaluating the performance of the model
  • Reproducibility of results

Advanced Features

  • Extensible with more machine learning algorithms that comply with the Scikit-Learn API
  • Customizable hyperparameter ranges
  • Customizable score functions
  • Optional mlflow compatibility for tracking the optimization process

Installation

It is recommended to create a virtual environment using the venv package. To learn more about how to use venv, check out the official Python documentation at https://docs.python.org/3/library/venv.html.

# Create the virtual environment
python -m venv myenv
# Activate the virtual environment
source myenv/bin/activate

To install mloptimizer, run:

pip install mloptimizer

You can get more information about the package installation at https://pypi.org/project/mloptimizer/.

Quickstart

Here's a simple example of how to optimize hyperparameters in a decision tree classifier using the iris dataset:

from mloptimizer.interfaces import GeneticSearch, HyperparameterSpaceBuilder
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris

# 1) Load the dataset and get the features and target
X, y = load_iris(return_X_y=True)

# 2) Define the hyperparameter space (a default space is provided for some algorithms)
hyperparameter_space = HyperparameterSpaceBuilder.get_default_space(DecisionTreeClassifier)

# 3) Create the optimizer and optimize the classifier
# - 10 generations starting with a population of 10 individuals, other parameters are set to default

opt = GeneticSearch(estimator_class=DecisionTreeClassifier,
                    hyperparam_space=hyperparameter_space,
                    genetic_params_dict={"generations": 5, "population_size": 5}
                    )

# 4) Optimize the classifier, the optimization returns the best estimator found in the optimization process
opt.fit(X, y)

print(opt.best_estimator_)

Other algorithms can be used, such as RandomForestClassifier or XGBClassifier which have a default hyperparameter space defined in the library. Even if the algorithm is not included in the default hyperparameter space, you can define your own hyperparameter space following the documentation.

More details in the documentation.

Examples

Examples can be found in examples on readthedocs.io.

Dependencies

The following dependencies are used in mloptimizer:

  • Deap - Genetic Algorithms
  • XGBoost - Gradient boosting classifier
  • Scikit-Learn - Machine learning algorithms and utilities

Optional:

  • Keras - Deep learning library
  • mlflow - Tracking the optimization process

Documentation

The documentation for mloptimizer can be found in the project's wiki with examples, classes and methods reference.

Authors

  • Antonio Caparrini - Author - caparrini
  • Javier Arroyo Gallardo - Author - javiag

Analytics

Alt

License

This project is licensed under the MIT License.