-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmax_ent_config_naive_gradient_descent.m
61 lines (53 loc) · 2.01 KB
/
max_ent_config_naive_gradient_descent.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
function [C_con, alpha, beta, it] = max_ent_config_naive_gradient_descent(C, tolerance, r, transform_to_corr_mat)
% Credits to
% https://journals.aps.org/pre/pdf/10.1103/PhysRevE.98.012312
% Code from Naoki Masuda
% https://github.com/naokimas/config_corr
%
%
% Input
% C: covariance matrix
% tolerance: tolerance in relative error
% r: learning rate
% transform_to_corr_mat: whether to trasnform the input and output covariance matrix
% to the correlation matrix.
% 0: no transform
% 1: transform (default)%
% Output
% C_con: estimated covariance matrix
% alpha, beta: parameters of the estimated covariance/precision matrix
% it: iteration number
%
% estimated precision matrix K_est is given by
% K_est(i,i) = alpha(i)
% K_est(i,j) = beta(i) + beta(j)
N = size(C,1); % number of nodes
if transform_to_corr_mat == 1 % transform the input matrix to the correlation matrix
C = diag(diag(C))^(-1/2) * C * diag(diag(C))^(-1/2); % corr matrix; overwritten on the original variable C
end
s = sum(C,2); % node strength including the self-loop
% 's' is a column vector
K = inv(C); % precision matrix from data
alpha = diag(K); % initialization
beta = zeros(N,1); % initialization
error = 1e+3; % initialization
it=0; % number of iteration
while (error > tolerance)
% construct the precision matrix from the current estimate
K_est = repmat(beta,1,N) + repmat(beta,1,N)';
for i=1:N
K_est(i,i) = K_est(i,i) + alpha(i);
end
% covariance matrix from the current estimate
C_con = inv(K_est);
% gradient descent on the log likelihood
alpha = alpha + r * (diag(C_con) - diag(C));
beta = beta + r * (1/N) * (sum(C_con,2) - s); % gradient descent on the covariance matrix
if (mod(it,1000) == 0) % Then measure the relative error
error = (sum(abs((diag(C) - diag(C_con)) ./ diag(C))) + ...
sum(abs(((s - sum(C_con,2)) ./ s)))) / N;
fprintf('%f %f %f\n', error, mean(abs(alpha)), mean(abs(beta)));
end
it = it + 1;
end % end of while loop
end