forked from guzy0324/ray_tracing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvec3.h
153 lines (121 loc) · 4.67 KB
/
vec3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#ifndef VEC3_H
#define VEC3_H
#include "math.h"
#include <iostream>
class vec3 {
public:
__host__ __device__ vec3() : e{0.0f,0.0f,0.0f} {}
__host__ __device__ vec3(float e0, float e1, float e2) : e{e0, e1, e2} {}
__host__ __device__ float x() const { return e[0]; }
__host__ __device__ float y() const { return e[1]; }
__host__ __device__ float z() const { return e[2]; }
__host__ __device__ vec3 operator-() const { return vec3(-e[0], -e[1], -e[2]); }
__host__ __device__ float operator[](int i) const { return e[i]; }
__host__ __device__ float& operator[](int i) { return e[i]; }
__host__ __device__ vec3& operator+=(const vec3 &v) {
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
__host__ __device__ vec3& operator*=(const float t) {
e[0] *= t;
e[1] *= t;
e[2] *= t;
return *this;
}
__host__ __device__ vec3& operator/=(const float t) {
return *this *= 1/t;
}
__host__ __device__ float length() const {
return sqrt(length_squared());
}
__host__ __device__ float length_squared() const {
return e[0]*e[0] + e[1]*e[1] + e[2]*e[2];
}
__device__ inline static vec3 random(curandState* rand_state) {
return vec3(random_float(rand_state), random_float(rand_state), random_float(rand_state));
}
__device__ inline static vec3 random(float min, float max, curandState* rand_state) {
return vec3(random_float(min, max, rand_state), random_float(min, max, rand_state), random_float(min, max, rand_state));
}
__host__ __device__ bool near_zero() const {
// Return true if the vector is close to zero in all dimensions.
const float s = 1e-8f;
return (fabs(e[0]) < s) && (fabs(e[1]) < s) && (fabs(e[2]) < s);
}
public:
float e[3];
};
// Type aliases for vec3
using point3 = vec3; // 3D point
using color = vec3; // RGB color
// vec3 Utility Functions
__host__ inline std::ostream& operator<<(std::ostream &out, const vec3 &v) {
return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
}
__host__ __device__ inline vec3 operator+(const vec3 &u, const vec3 &v) {
return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
}
__host__ __device__ inline vec3 operator-(const vec3 &u, const vec3 &v) {
return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
}
__host__ __device__ inline vec3 operator*(const vec3 &u, const vec3 &v) {
return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]);
}
__host__ __device__ inline vec3 operator*(float t, const vec3 &v) {
return vec3(t*v.e[0], t*v.e[1], t*v.e[2]);
}
__host__ __device__ inline vec3 operator*(const vec3 &v, float t) {
return t * v;
}
__host__ __device__ inline vec3 operator/(vec3 v, float t) {
return (1/t) * v;
}
__host__ __device__ inline float dot(const vec3 &u, const vec3 &v) {
return u.e[0] * v.e[0]
+ u.e[1] * v.e[1]
+ u.e[2] * v.e[2];
}
__host__ __device__ inline vec3 cross(const vec3 &u, const vec3 &v) {
return vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1],
u.e[2] * v.e[0] - u.e[0] * v.e[2],
u.e[0] * v.e[1] - u.e[1] * v.e[0]);
}
__host__ __device__ inline vec3 unit_vector(vec3 v) {
return v / v.length();
}
__device__ vec3 random_in_unit_sphere(curandState* local_rand_state) {
while (true) {
vec3 p = vec3::random(-1,1,local_rand_state);
if (p.length_squared() >= 1) continue;
return p;
}
}
__device__ vec3 random_unit_vector(curandState* local_rand_state) {
return unit_vector(random_in_unit_sphere(local_rand_state));
}
__device__ vec3 random_in_hemisphere(const vec3& normal, curandState* local_rand_state) {
vec3 in_unit_sphere = random_in_unit_sphere(local_rand_state);
if (dot(in_unit_sphere, normal) > 0.0) // In the same hemisphere as the normal
return in_unit_sphere;
else
return -in_unit_sphere;
}
__device__ vec3 reflect(const vec3& v, const vec3& n) {
return v - 2 * dot(v, n) * n;
}
__device__ vec3 refract(const vec3& uv, const vec3& n, float etai_over_etat) {
float cos_theta = fmin(dot(-uv, n), 1.0f);
vec3 r_out_perp = etai_over_etat * (uv + cos_theta*n);
vec3 r_out_parallel = -sqrt(fabs(1.0f - r_out_perp.length_squared())) * n;
return r_out_perp + r_out_parallel;
}
__device__ vec3 random_in_unit_disk(curandState* local_rand_state) {
while (true) {
vec3 p = vec3(random_float(-1.0f,1.0f,local_rand_state), random_float(-1.0f,1.0f,local_rand_state), 0.0f);
if (p.length_squared() >= 1) continue;
return p;
}
}
#endif