-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgraph.py
173 lines (144 loc) · 5.34 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import json
from typing_extensions import TypedDict, Annotated
from langgraph.graph import END, StateGraph
from langgraph.graph.message import add_messages
from langchain.chains.sql_database.prompt import SQL_PROMPTS
from pydantic import BaseModel, Field
from .llm_factory import get_llm
from llm_utils.chains import (
query_refiner_chain,
query_redefined_again_chain,
query_maker_chain,
)
from llm_utils.tools import get_info_from_db
# 노드 식별자 정의
QUERY_REFINER = "query_refiner"
QUERY_REFINED_AGAIN = "query_redefined_again"
GET_TABLE_INFO = "get_table_info"
TOOL = "tool"
TABLE_FILTER = "table_filter"
QUERY_MAKER = "query_maker"
# 상태 타입 정의 (추가 상태 정보와 메시지들을 포함)
class QueryMakerState(TypedDict):
messages: Annotated[list, add_messages]
user_database_env: str
searched_tables: dict[str, dict[str, str]]
best_practice_query: str
refined_input: str
refined_input_again: str
generated_query: str
# 노드 함수: QUERY_REFINER 노드
def query_refiner_node(state: QueryMakerState):
res = query_refiner_chain.invoke(
input={
"user_input": [state["messages"][0].content],
"user_database_env": [state["user_database_env"]],
"best_practice_query": [state["best_practice_query"]],
}
)
state["messages"].append(res)
state["refined_input"] = res
return state
def get_table_info_node(state: QueryMakerState):
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
try:
db = FAISS.load_local(
os.getcwd() + "/table_info_db",
embeddings,
allow_dangerous_deserialization=True,
)
except:
documents = get_info_from_db()
db = FAISS.from_documents(documents, embeddings)
db.save_local(os.getcwd() + "/table_info_db")
print("table_info_db not found")
doc_res = db.similarity_search(state["messages"][-1].content)
documents_dict = {}
for doc in doc_res:
lines = doc.page_content.split("\n")
# 테이블명 및 설명 추출
table_name, table_desc = lines[0].split(": ", 1)
# 컬럼 정보 추출
columns = {}
if len(lines) > 2 and lines[1].strip() == "Columns:":
for line in lines[2:]:
if ": " in line:
col_name, col_desc = line.split(": ", 1)
columns[col_name.strip()] = col_desc.strip()
# 딕셔너리 저장
documents_dict[table_name] = {
"table_description": table_desc.strip(),
**columns, # 컬럼 정보 추가
}
state["searched_tables"] = documents_dict
return state
def query_redefined_again_node(state: QueryMakerState):
res = query_redefined_again_chain.invoke(
input={
"user_input": [state["messages"][0].content],
"refined_input": [state["refined_input"]],
"user_database_env": [state["user_database_env"]],
"searched_tables": [json.dumps(state["searched_tables"])],
}
)
state["refined_input_again"] = res
print(state["refined_input_again"])
return state
# 노드 함수: QUERY_MAKER 노드
def query_maker_node(state: QueryMakerState):
res = query_maker_chain.invoke(
input={
"user_input": [state["messages"][0].content],
"refined_input": [state["refined_input"]],
"searched_tables": [json.dumps(state["searched_tables"])],
"user_database_env": [state["user_database_env"]],
}
)
state["generated_query"] = res
state["messages"].append(res)
return state
class SQLResult(BaseModel):
sql: str = Field(description="SQL 쿼리 문자열")
explanation: str = Field(description="SQL 쿼리 설명")
def query_maker_node_with_db_guide(state: QueryMakerState):
sql_prompt = SQL_PROMPTS[state["user_database_env"]]
llm = get_llm(
model_type="openai",
model_name="gpt-4o-mini",
openai_api_key=os.getenv("OPENAI_API_KEY"),
)
chain = sql_prompt | llm.with_structured_output(SQLResult)
res = chain.invoke(
input={
"input": "\n\n---\n\n".join(
[state["messages"][0].content]
# + [state["refined_input"].content]
+ [state["refined_input_again"].content]
),
"table_info": [json.dumps(state["searched_tables"])],
"top_k": 10,
}
)
state["generated_query"] = res.sql
state["messages"].append(res.explanation)
return state
# StateGraph 생성 및 구성
builder = StateGraph(QueryMakerState)
builder.set_entry_point(QUERY_REFINER)
# 노드 추가
builder.add_node(QUERY_REFINER, query_refiner_node)
builder.add_node(GET_TABLE_INFO, get_table_info_node)
# builder.add_node(QUERY_MAKER, query_maker_node) # query_maker_node_with_db_guide
builder.add_node(
QUERY_MAKER, query_maker_node_with_db_guide
) # query_maker_node_with_db_guide
builder.add_node(QUERY_REFINED_AGAIN, query_redefined_again_node)
# 기본 엣지 설정
builder.add_edge(QUERY_REFINER, GET_TABLE_INFO)
builder.add_edge(GET_TABLE_INFO, QUERY_REFINED_AGAIN)
builder.add_edge(QUERY_REFINED_AGAIN, QUERY_MAKER)
# QUERY_MAKER 노드 후 종료
builder.add_edge(QUERY_MAKER, END)