Skip to content

Latest commit

 

History

History
27 lines (23 loc) · 1.23 KB

README.md

File metadata and controls

27 lines (23 loc) · 1.23 KB

Models-pruning

  1. Prune MobileNetv1,2,3, VGG16, and EfficientNet-b0 in various way using Torch-Pruning library (https://github.com/VainF/Torch-Pruning)
  2. Convert .pt to .ONNX
  3. Quantize ONNX models
  4. Deploy ONNX models on Rasberry Pi 3b+
  • /checkpoints: .pt model files

  • /deploy: Deployment code

    • deploy_onnx.py: Deploy tflite file on RPi

    python deploy_onnx_measurement.py --model [model name] --file [output_file_suffix ]

    • measure.py: Measure temperature and energy usage of RPi
    • metric_reader.py: Organize results of deployment
  • /(model): Pruned .pt model files

  • /models: MobileNetv1, MobileNetv2, and MobileNetv3 codes

    • (model).py: Layers are separated
    • (model)_default.py: Default model codes
  • /onnx: Converted ONNX files

  • draw_(graph).py:

  • measure_latency: Measure the latency of each layer

  • pruning.py: Prune model files using Torch-Pruning library

    • You can choose model, pruning amount, fine-tuning epochs, layers to prune, and strategy using arguments
    • python pruning.py --model [model name] --finetune_epochs [finetuning epochs] --prune [pruning amount] --layer [layers to prune] --strategy [pruning strategy]
  • pruning_pt.py: Prune model files given in class

  • run.sh: Automatically run codes