-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuffer.py
101 lines (75 loc) · 3.11 KB
/
buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from turtle import done
import numpy as np
import collections
import random
class DataBuffer:
def __init__(self):
self.buffer = []
def store_transition(self,state,action,reward,new_state,done):
self.buffer.append((state,action,reward,new_state,done))
def sample(self):
l_s, l_a, l_r, l_s_, l_done = [], [], [], [], []
for item in self.buffer:
s, a, r, s_, done = item
l_s.append(s)
l_a.append(a)
l_r.append(r)
l_s_.append(s_)
l_done.append(done)
return l_s, l_a, l_r, l_s_, l_done
def clear(self):
self.buffer.clear()
class My_ReplayBuffer:
def __init__(self,max_size):
self.buffer = collections.deque(maxlen=max_size)
def store_transition(self,state,action,reward,new_state,done):
self.buffer.append((state,action,reward,new_state,done))
def sample(self, batch_size):
'''
return state , action ,reward , state_ ,done
'''
transitions = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = zip(*transitions)
return state, action, reward, next_state, done
def sample_all(self):
transitions = random.sample(self.buffer,self.size())
state, action, reward, next_state, done = zip(*transitions)
return state, action, reward, next_state, done
def sample_no_randonm(self):
state, action, reward, next_state, done = zip(*self.buffer)
return state, action, reward, next_state, done
def clear(self):
self.buffer.clear()
def size(self):
return len(self.buffer)
class ReplayBuffer:
def __init__(self,max_size,input_shape,n_actions):
self.memory_size = max_size
self.memory_counter = 0
self.state_memory = np.zeros((self.memory_size,input_shape))
self.new_state_memory = np.zeros((self.memory_size,input_shape))
self.action_memory = np.zeros((self.memory_size,n_actions))
self.reward_memory = np.zeros(self.memory_size)
self.terminal_memory = np.zeros(self.memory_size,dtype=np.bool)
def store_transition(self,state,action,reward,new_state,done):
index = self.memory_counter % self.memory_size
self.state_memory[index] = state
self.new_state_memory[index] = new_state
self.action_memory[index] = action
self.reward_memory[index] = reward
self.terminal_memory[index] = done
self.memory_counter += 1
def sample_buffer(self,batch_size):
'''
states,actions,rewards,states_,dones
'''
max_mem = min(self.memory_counter,self.memory_size)
batch = np.random.choice(max_mem,batch_size,replace=False)
states = self.state_memory[batch]
states_ = self.new_state_memory[batch]
actions = self.action_memory[batch]
rewards = self.reward_memory[batch]
dones = self.terminal_memory[batch]
return states,actions,rewards,states_,dones