forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDepthwiseConvKernel.cpp
305 lines (267 loc) · 9.45 KB
/
DepthwiseConvKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#include <ATen/native/cpu/DepthwiseConvKernel.h>
#include <ATen/ATen.h>
#include <ATen/Parallel.h>
#ifdef __ARM_NEON__
#include <arm_neon.h>
#endif
namespace at {
namespace native {
namespace {
struct Arguments final {
// Input layer dimensions
int64_t batch;
int64_t in_rows;
int64_t in_cols;
int64_t stride;
int64_t pad_rows;
int64_t pad_cols;
// Output layer dimensions
int64_t out_rows;
int64_t out_cols;
};
inline std::vector<int64_t> calculate_conv_output_size(
const IntArrayRef input_size,
const IntArrayRef weight_size,
const IntArrayRef stride,
const IntArrayRef padding) {
const auto calc_output_dimension = [](
const int64_t input, const int64_t kernel, const int64_t stride, const int64_t padding) {
return 1 + (input - kernel + 2 * padding) / stride;
};
return std::vector<int64_t> {
input_size[0],
weight_size[0],
calc_output_dimension(input_size[2], weight_size[2], stride[0], padding[0]),
calc_output_dimension(input_size[3], weight_size[3], stride[1], padding[1]),
};
}
#ifdef __ARM_NEON__
inline void winograd_f2k3_input_transform_inplace__neon(
float32x4_t* const d0,
float32x4_t* const d1,
float32x4_t* const d2,
float32x4_t* const d3) {
const float32x4_t wd0 = *d0 - *d2;
const float32x4_t wd1 = *d1 + *d2;
const float32x4_t wd2 = -*d1 + *d2;
const float32x4_t wd3 = *d1 - *d3;
*d0 = wd0;
*d1 = wd1;
*d2 = wd2;
*d3 = wd3;
}
inline void winograd_f2k3_output_transform_inplace__neon(
float32x4_t* const m0,
float32x4_t* const m1,
const float32x4_t* const m2,
const float32x4_t* const m3) {
*m0 = *m0 + *m1 + *m2;
*m1 = *m1 - *m2 - *m3;
}
inline float32x4_t
vmuladdq_f32(const float32x4_t c, const float32x4_t a, const float32x4_t b) {
#if defined(__aarch64__)
return vfmaq_f32(c, a, b);
#else
return vmlaq_f32(c, a, b);
#endif
}
inline float32x4_t
vmulsubq_f32(const float32x4_t c, const float32x4_t a, const float32x4_t b) {
#if defined(__aarch64__)
return vfmsq_f32(c, a, b);
#else
return vmlsq_f32(c, a, b);
#endif
}
inline void winograd_f2k3_kernel_transform__neon(
const float32x4_t g0,
const float32x4_t g1,
const float32x4_t g2,
float32x4_t* const transform0,
float32x4_t* const transform1,
float32x4_t* const transform2,
float32x4_t* const transform3) {
const float32x4_t const_half = vdupq_n_f32(0.5f);
float32x4_t half_g0_plus_g2 = const_half * (g0 + g2);
*transform0 = g0;
*transform1 = vmuladdq_f32(half_g0_plus_g2, const_half, g1);
*transform2 = vmulsubq_f32(half_g0_plus_g2, const_half, g1);
*transform3 = g2;
}
inline float32x4x4_t v4f_transpose4x4__neon(const float32x4x4_t m) {
float32x4x4_t ret;
vst4q_f32((float*)(&ret), m);
return ret;
}
void convolution_depthwise3x3_winograd_impl(
const Arguments& args,
const float* const input,
const float* const kernel,
const float* const bias,
float* const output) {
const float32x4_t vbias = vsetq_lane_f32(*bias, vdupq_n_f32(0.0), 1);
float32x4x4_t kernel_tile;
{
const float32x4_t g0 = vld1q_f32(kernel);
const float32x4_t g1 = vld1q_f32(kernel + 3);
// g2[3] is junk
const float32x4_t g2 =
vextq_f32(vld1q_f32(kernel + 5), vld1q_f32(kernel + 5), 1);
float32x4x4_t w;
winograd_f2k3_kernel_transform__neon(
g0, g1, g2, &w.val[0], &w.val[1], &w.val[2], &w.val[3]);
w = v4f_transpose4x4__neon(w);
winograd_f2k3_kernel_transform__neon(
w.val[0],
w.val[1],
w.val[2],
&kernel_tile.val[0],
&kernel_tile.val[1],
&kernel_tile.val[2],
&kernel_tile.val[3]);
}
#define TILE \
winograd_f2k3_input_transform_inplace__neon( \
&input_tile.val[0], \
&input_tile.val[1], \
&input_tile.val[2], \
&input_tile.val[3]); \
input_tile = v4f_transpose4x4__neon(input_tile); \
winograd_f2k3_input_transform_inplace__neon( \
&input_tile.val[0], \
&input_tile.val[1], \
&input_tile.val[2], \
&input_tile.val[3]); \
\
for (int64_t row = 0; row < 4; ++row) { \
input_tile.val[row] = \
vmulq_f32(input_tile.val[row], kernel_tile.val[row]); \
} \
\
input_tile.val[1] = input_tile.val[1] + vbias; \
winograd_f2k3_output_transform_inplace__neon( \
&input_tile.val[0], \
&input_tile.val[1], \
&input_tile.val[2], \
&input_tile.val[3]); \
input_tile = v4f_transpose4x4__neon(input_tile); \
winograd_f2k3_output_transform_inplace__neon( \
&input_tile.val[0], \
&input_tile.val[1], \
&input_tile.val[2], \
&input_tile.val[3])
// Non-padded regime.
// Iterate over non-padded output tiles.
// TODO: avoid spilling W by breaking out the non-padded vs padded case.
for (int64_t oth = 0; oth < (args.out_rows + 1) / 2; ++oth) {
for (int64_t otw = 0; otw < (args.out_cols + 1) / 2; ++otw) {
// load input tile for [oth, otw];
int64_t ih = oth * 2 - args.pad_rows;
int64_t iw = otw * 2 - args.pad_cols;
// fast-path, all accesses in-bounds
if (C10_LIKELY(
ih >= 0 && iw >= 0 && ih + 3 < args.in_rows &&
iw + 3 < args.in_cols && 2 * oth + 1 < args.out_rows &&
2 * otw + 1 < args.out_cols
)) {
float32x4x4_t input_tile;
for (int64_t row = 0; row < 4; ++row) {
input_tile.val[row] =
vld1q_f32(input + (ih + row) * args.in_cols + iw);
}
TILE;
for (size_t row = 0; row < 2; ++row) {
vst1_f32(
output + (oth * 2 + row) * args.out_cols + otw * 2,
vget_low_f32(input_tile.val[row]));
}
} else {
float block[4][4];
for (int64_t row = 0; row < 4; ++row) {
for (int64_t col = 0; col < 4; ++col) {
if (ih + row >= 0 && iw + col >= 0 && ih + row < args.in_rows &&
iw + col < args.in_cols) {
block[row][col] = input[(ih + row) * args.in_cols + iw + col];
} else {
block[row][col] = 0.0;
}
}
}
float32x4x4_t input_tile;
for (int64_t row = 0; row < 4; ++row) {
input_tile.val[row] = vld1q_f32(&block[row][0]);
}
TILE;
float oblock[2][2];
for (int64_t row = 0; row < 2; ++row) {
vst1_f32(&oblock[row][0], vget_low_f32(input_tile.val[row]));
}
for (int64_t row = 0; row < 2; ++row) {
for (int64_t col = 0; col < 2; ++col) {
if (2 * oth + row < args.out_rows &&
2 * otw + col < args.out_cols) {
output[(2 * oth + row) * args.out_cols + 2 * otw + col] =
oblock[row][col];
}
}
}
}
}
}
}
#else
void convolution_depthwise3x3_winograd_impl(
const Arguments&,
const float* const,
const float* const,
const float* const,
float* const) {
}
#endif /* __ARM_NEON__ */
Tensor _convolution_depthwise3x3_winograd(
const Tensor & input,
const Tensor & kernel,
const Tensor & bias_potentially_undefined,
const IntArrayRef stride,
const IntArrayRef padding,
const int64_t groups)
{
const IntArrayRef input_sizes = input.sizes();
const IntArrayRef kernel_sizes = kernel.sizes();
Tensor output = at::empty(
calculate_conv_output_size(input_sizes, kernel_sizes, stride, padding),
input.options());
const IntArrayRef output_sizes = output.sizes();
const Arguments args {
input_sizes[0], // Input N
input_sizes[2], // Input H
input_sizes[3], // Input W
stride[0], // Stride
padding[0], // Padding Rows
padding[1], // Padding Columns
output_sizes[2], // Output H
output_sizes[3], // Output W
};
const int64_t input_hxw = args.in_rows * args.in_cols;
const int64_t output_hxw = args.out_rows * args.out_cols;
const Tensor bias = bias_potentially_undefined.defined() ?
bias_potentially_undefined :
at::zeros({kernel_sizes[0]}, input.options());
at::parallel_for(0, args.batch * groups, 0, [&](int64_t start, int64_t end) {
for (int64_t k = start; k < end; ++k) {
const int64_t g = k % groups;
convolution_depthwise3x3_winograd_impl(
args,
input.data_ptr<float>() + k * input_hxw,
kernel.data_ptr<float>() + g * 3 * 3,
bias.data_ptr<float>() + g,
output.data_ptr<float>() + k * output_hxw);
}
});
return output;
}
} // namespace
REGISTER_DISPATCH(convolution_depthwise3x3_winograd_stub, &_convolution_depthwise3x3_winograd);
} // namespace native
} // namespace at