forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupport.h
174 lines (149 loc) · 5.2 KB
/
support.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#pragma once
#include <test/cpp/common/support.h>
#include <gtest/gtest.h>
#include <c10/util/Exception.h>
#include <ATen/TensorIndexing.h>
#include <torch/nn/cloneable.h>
#include <torch/types.h>
#include <torch/utils.h>
#include <string>
#include <utility>
namespace torch {
namespace test {
// Lets you use a container without making a new class,
// for experimental implementations
class SimpleContainer : public nn::Cloneable<SimpleContainer> {
public:
void reset() override {}
template <typename ModuleHolder>
ModuleHolder add(
ModuleHolder module_holder,
std::string name = std::string()) {
return Module::register_module(std::move(name), module_holder);
}
};
struct SeedingFixture : public ::testing::Test {
SeedingFixture() {
torch::manual_seed(0);
}
};
struct WarningCapture : public WarningHandler {
WarningCapture() : prev_(Warning::get_warning_handler()) {
Warning::set_warning_handler(this);
}
~WarningCapture() {
Warning::set_warning_handler(prev_);
}
const std::vector<std::string>& messages() {
return messages_;
}
std::string str() {
return c10::Join("\n", messages_);
}
void process(const SourceLocation& source_location, const std::string& msg, const bool /*verbatim*/)
override {
messages_.push_back(msg);
}
private:
WarningHandler* prev_;
std::vector<std::string> messages_;
};
inline bool pointer_equal(at::Tensor first, at::Tensor second) {
return first.data_ptr() == second.data_ptr();
}
// This mirrors the `isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor)` branch
// in `TestCase.assertEqual` in torch/testing/_internal/common_utils.py
inline void assert_tensor_equal(at::Tensor a, at::Tensor b, bool allow_inf=false) {
ASSERT_TRUE(a.sizes() == b.sizes());
if (a.numel() > 0) {
if (a.device().type() == torch::kCPU && (a.scalar_type() == torch::kFloat16 || a.scalar_type() == torch::kBFloat16)) {
// CPU half and bfloat16 tensors don't have the methods we need below
a = a.to(torch::kFloat32);
}
if (a.device().type() == torch::kCUDA && a.scalar_type() == torch::kBFloat16) {
// CUDA bfloat16 tensors don't have the methods we need below
a = a.to(torch::kFloat32);
}
b = b.to(a);
if ((a.scalar_type() == torch::kBool) != (b.scalar_type() == torch::kBool)) {
TORCH_CHECK(false, "Was expecting both tensors to be bool type.");
} else {
if (a.scalar_type() == torch::kBool && b.scalar_type() == torch::kBool) {
// we want to respect precision but as bool doesn't support subtraction,
// boolean tensor has to be converted to int
a = a.to(torch::kInt);
b = b.to(torch::kInt);
}
auto diff = a - b;
if (a.is_floating_point()) {
// check that NaNs are in the same locations
auto nan_mask = torch::isnan(a);
ASSERT_TRUE(torch::equal(nan_mask, torch::isnan(b)));
diff.index_put_({nan_mask}, 0);
// inf check if allow_inf=true
if (allow_inf) {
auto inf_mask = torch::isinf(a);
auto inf_sign = inf_mask.sign();
ASSERT_TRUE(torch::equal(inf_sign, torch::isinf(b).sign()));
diff.index_put_({inf_mask}, 0);
}
}
// TODO: implement abs on CharTensor (int8)
if (diff.is_signed() && diff.scalar_type() != torch::kInt8) {
diff = diff.abs();
}
auto max_err = diff.max().item<double>();
ASSERT_LE(max_err, 1e-5);
}
}
}
// This mirrors the `isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor)` branch
// in `TestCase.assertNotEqual` in torch/testing/_internal/common_utils.py
inline void assert_tensor_not_equal(at::Tensor x, at::Tensor y) {
if (x.sizes() != y.sizes()) {
return;
}
ASSERT_GT(x.numel(), 0);
y = y.type_as(x);
y = x.is_cuda() ? y.to({torch::kCUDA, x.get_device()}) : y.cpu();
auto nan_mask = x != x;
if (torch::equal(nan_mask, y != y)) {
auto diff = x - y;
if (diff.is_signed()) {
diff = diff.abs();
}
diff.index_put_({nan_mask}, 0);
// Use `item()` to work around:
// https://github.com/pytorch/pytorch/issues/22301
auto max_err = diff.max().item<double>();
ASSERT_GE(max_err, 1e-5);
}
}
inline int count_substr_occurrences(const std::string& str, const std::string& substr) {
int count = 0;
size_t pos = str.find(substr);
while (pos != std::string::npos) {
count++;
pos = str.find(substr, pos + substr.size());
}
return count;
}
// A RAII, thread local (!) guard that changes default dtype upon
// construction, and sets it back to the original dtype upon destruction.
//
// Usage of this guard is synchronized across threads, so that at any given time,
// only one guard can take effect.
struct AutoDefaultDtypeMode {
static std::mutex default_dtype_mutex;
AutoDefaultDtypeMode(c10::ScalarType default_dtype) : prev_default_dtype(torch::typeMetaToScalarType(torch::get_default_dtype())) {
default_dtype_mutex.lock();
torch::set_default_dtype(torch::scalarTypeToTypeMeta(default_dtype));
}
~AutoDefaultDtypeMode() {
default_dtype_mutex.unlock();
torch::set_default_dtype(torch::scalarTypeToTypeMeta(prev_default_dtype));
}
c10::ScalarType prev_default_dtype;
};
} // namespace test
} // namespace torch