- 新建maven项目
- 配置pom.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>cherry</groupId>
<artifactId>WordCount</artifactId>
<version>1.0-SNAPSHOT</version>
<repositories>
<repository>
<id>apache</id>
<url>http://maven.apache.org</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-core</artifactId>
<version>1.2.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.4</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.4</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.4</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-dependency-plugin</artifactId>
<configuration>
<excludeTransitive>false</excludeTransitive>
<stripVersion>true</stripVersion>
<outputDirectory>./lib</outputDirectory>
</configuration>
</plugin>
</plugins>
</build>
</project>
- 在/src/main/java目录下编写主程序 WordCount.java
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.util.StringTokenizer;
public class WordCount {
//Mapper将输入键值对映射成一组中间格式的键值对集合,Mapper原型:Mapper<KEYIN,VALUEIN,KEYOUT,VALUEOUT>
/*
* Mapper包含
* */
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException{
StringTokenizer itr = new StringTokenizer(value.toString());
while(itr.hasMoreTokens()){
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException{
int sum = 0;
for(IntWritable val : values){
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException{
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true)?0:1);
}
}
- 生成jar包:
在项目上鼠标右键--》 Open Module Settings
Artifacts --》 + --》 JAR --> From modules with dependencies
然后选择自己的class
必须强调一点的是:需要自己设置META-INF/MANIFEST.MF文件的位置,不能用默认的,推荐放在和src并排的目录下。(经过测试,在我的hadoop环境上确实是这样的)
生成jar包时有两个选择,第一个extract to the target JAR指的是把你的主java程序打成jar包,下面那个的意思是除了把你的主java程序打成jar包,还会顺带所有的程序依赖jar包,这样生成的就是一个文件夹下面多个jar包!
我这里选择的是第一种方式!
然后就是根据默认选项一直NEXT,到最后OK
最后一步:Build --》Build Artifacts --》WordCount.jar --> Build
然后就会出来这么一个小窗口
到这里,jar包就打好了。
-
将上一步生成的jar拷到/home/cherry/hadoop-2.7.4的目录下
-
在/home/cherry/hadoop-2.7.4的目录下新建一个文件夹file,里面存储input01.txt和input02.txt两个文件,作为程序的输入文件
-
在远程HDFS上创建输入文件夹
在/home/cherry/hadoop-2.7.4下运行 hadoop fs -mkdir /hdfsInput
-
将本地的文件上传到远程输入文件夹
在/home/cherry/hadoop-2.7.4下运行 hadoop fs -put file/input*.txt /hdfsInput
*是通配符,为了匹配input01.txt和input02.txt两个输入文件
-
运行jar包
在/home/cherry/hadoop-2.7.4下运行 hadoop jar WordCount.jar /hdfsInput /hdfsOutput
需要注意的是:在运行该命令时,/hdfsOutput一定是不存在的,如果存在该文件,则会报错
在localhost:50070上可以直接看到hdfsInput和hdfsOutput两个文件夹及其中的文件,运行结果保存在hdfsOutput文件夹下的part-r-00000文件里面。
如果要在命令行下面查看,在/home/cherry/hadoop-2.7.4下运行 hadoop fs -ls /hdfsOutput查看hdfsOutput文件夹的所有文件,然后 hadoop fs -cat /hdfsOutput/*,查看hdfsOutput文件夹下的所有文件内容
http://www.cnblogs.com/davidgu/p/6140927.html