-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHAR.js
227 lines (201 loc) · 8.46 KB
/
HAR.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import filesSystem from "fs";
import * as TOOLS from "./tools";
import * as COMMON from "./sequentialPatternMining/common";
import Event from "./patternUse/Event";
let simulatedTrace = ["water", "cup", "tea", "water", "cup", "tea", "vacuum", "cup", "tea"];
let patternPerActivityOriginal = JSON.parse(filesSystem.readFileSync("./selectedPatterns/patterns.json"), TOOLS.reviverDate);
let patternPerActivityImageExtractor = JSON.parse(filesSystem.readFileSync("./selectedPatterns/patternsImageExtractor.json"), TOOLS.reviverDate);
function preprocessTrace(events)
{
return events;
}
function cutUsingSlidingWindowTechnique(trace, windowSize, overlap)
{
let cutTrace = [];
let index = 0;
while(index + windowSize <= trace.length)
{
//Store index of related event
let indexEvent = index + windowSize -1;
cutTrace.push([trace.slice(index, windowSize + index), indexEvent]);
//Compute new index
index += Math.round(windowSize * (1 - overlap));
}
return cutTrace;
}
function cutUsingSlidingWindowTechniqueTime(trace, windowSizeHAR)
{
if(trace.length !== 0)
{
let cutTrace = [];
let firstData = trace[0];
let lastData = trace[trace.length - 1];
let indexBegin = trace.findIndex(d => d.timestamp > firstData.timestamp + windowSizeHAR/2);
let indexEnd = TOOLS.findLastIndex(trace, d => d.timestamp < lastData.timestamp - windowSizeHAR/2);
for(let index = indexBegin; index < indexEnd; index++)
{
let beginWindow = trace[index].timestamp - windowSizeHAR/2;
let endWindow = trace[index].timestamp + windowSizeHAR/2;
let usedData = trace.filter(d => d.timestamp > beginWindow && d.timestamp <= endWindow);
cutTrace.push([usedData, index]);
}
return cutTrace.map(([usedData, index]) => [usedData.map(d => d.data), index]);
}
else
{
return [];
}
}
function computeRelevanceScoresAndSortBy(part, indexEvent, patternsPerActivity)
{
//Find patterns used
let activitiesWithRelevanceScore =
patternsPerActivity
//Find existing patterns
.map(o => ({activityName: o.activityName, activityPatterns: o.activityPatterns.filter(activityPat =>
{
let res = COMMON.isSupported(activityPat.pattern, part);
if(res && o.activityName === "make_tea")
{
return true;
}
else if(res)
{
return true;
}
else
{
return false;
}
})}))
//Accumulate score
.map(o =>
{
o.relevanceScore = o.activityPatterns.reduce((count, curr) => count + curr.annotation, 0.0);
return o;
})
//Decreasing order
.sort((o1, o2) => o2.relevanceScore - o1.relevanceScore);
let sumScore = activitiesWithRelevanceScore.reduce((sum, curr) => sum + curr.relevanceScore, 0.0);
let normalizedActivitiesWithRelevanceScore = [];
if(sumScore === 0)
{
normalizedActivitiesWithRelevanceScore = activitiesWithRelevanceScore.map(o => {o.relevanceScore = 0.0;return o;});
}
else
{
normalizedActivitiesWithRelevanceScore = activitiesWithRelevanceScore.map(o => {o.relevanceScore = o.relevanceScore / sumScore;return o;});
}
return [part, indexEvent, normalizedActivitiesWithRelevanceScore];
}
function chooseLabelFromRelevanceScore(part, indexEvent, normalizedActivitiesWithRelevanceScore)
{
let label = "noActivity";
if(normalizedActivitiesWithRelevanceScore.length > 0 && normalizedActivitiesWithRelevanceScore[0].relevanceScore !== 0)
{
label = normalizedActivitiesWithRelevanceScore[0].activityName;
}
return [part, indexEvent, normalizedActivitiesWithRelevanceScore, label];
}
function addLabelToTrace(trace, indexEvent, label)
{
trace[indexEvent] = label;
return trace;
}
//Inspired by riboni et al.
//10.1109/WETICE.2017.38
export function HARUsingObjectsOnly(events, patternsImageExtractor, slidingWindowNumberEvents, smoothingFactor)
{
let labelledTrace = events.map(event => "noActivity");
let activities = patternsImageExtractor.map(p => p.activityName);
events.forEach((e, indexEvent) =>
{
let [maxActivity, maxWeight] = ["noActivity", -1];
if(indexEvent > slidingWindowNumberEvents)
{
[maxActivity, maxWeight] = activities
.map(a =>
{
//Get correct patterns from activity
let activityPatterns = patternsImageExtractor.find(o => o.activityName === a).activityPatterns;
//Compute w(a, tj)
let weight = 1.0;
for(let indexE = indexEvent; indexE > indexEvent - slidingWindowNumberEvents; indexE--)
{
let object = events[indexE].data;
let myPattern = activityPatterns.find(ap => ap.pattern[0] === object);
if(myPattern !== undefined)
{
let probObjectConditionalA = myPattern.annotation;
let exponent = indexEvent - indexE;
weight *= probObjectConditionalA * Math.pow(smoothingFactor, exponent);
}
}
return [a, weight];
})
//Find activity with max score
.reduce(([oldA, oldWeight], [a, weight]) => weight >= oldWeight ? [a, weight] : [oldA, oldWeight], ["noActivity", -1]);
}
addLabelToTrace(labelledTrace, indexEvent, maxActivity);
});
return labelledTrace;
}
function choosePatternsToUse(useImageExtractorPatternsOrSPMPatterns)
{
let patternsToUse = [];
switch(useImageExtractorPatternsOrSPMPatterns)
{
case "BOTH":
//Get all activities
let allActivities = [...new Set(patternPerActivityImageExtractor.map(a => a.activityName))];
//Merge activity patterns
patternsToUse = allActivities.map((a, index) =>
{
let patternIm = patternPerActivityImageExtractor.find(obj => obj.activityName === a);
let patternSPM = patternPerActivityOriginal.find(obj => obj.activityName === a);
let activityPatterns = [];
if(patternIm !== undefined)
{
activityPatterns = [...activityPatterns, ...patternIm.activityPatterns];
}
if(patternSPM !== undefined)
{
activityPatterns = [...activityPatterns, ...patternSPM.activityPatterns];
}
return ({activityName:a, activityPatterns});
});
break;
case "IMAGE_EXTRACTOR":
patternsToUse = patternPerActivityImageExtractor;
break;
case "SPM":
patternsToUse = patternPerActivityOriginal;
break;
default:
throw new Error("Invalid value for useImageExtractorPatternsOrSPMPatterns parameter")
}
return patternsToUse;
}
//For each element in trace, produce a label for the activity being
export function HARUsingSlidingWindowAndPatterns(events, mapParamValue)
{
let useImageExtractorPatternsOrSPMPatterns = mapParamValue.get("useImageExtractorPatternsOrSPMPatterns");
let windowSizeHAR = mapParamValue.get("windowSizeHAR");
let patternsToUse = choosePatternsToUse(useImageExtractorPatternsOrSPMPatterns);
//Default labelling
let labelledTrace = events.map(event => "noActivity");
//For each part of cutTrace, infer an activity relevance score
cutUsingSlidingWindowTechniqueTime(events, windowSizeHAR)
.map(([part, indexEvent]) => computeRelevanceScoresAndSortBy(part, indexEvent, patternsToUse))
.map(([part, indexEvent, normalizedActivitiesWithRelevanceScore]) => chooseLabelFromRelevanceScore(part, indexEvent, normalizedActivitiesWithRelevanceScore))
.forEach(([, indexEvent, , label]) => addLabelToTrace(labelledTrace, indexEvent, label));
return labelledTrace;
}
(async () =>
{
/*
let events = simulatedTrace;
preprocessTrace(events);
let res = HARUsingSlidingWindowAndPatterns(events, patternPerActivity, 4, 0.5);
console.log(res);*/
})();