Skip to content

Latest commit

 

History

History
268 lines (198 loc) · 11.9 KB

elastirini.md

File metadata and controls

268 lines (198 loc) · 11.9 KB

Elastirini: Anserini Integration with Elasticsearch

Anserini provides code for indexing into an ELK stack (i.e., the stack built on top of Elasticsearch), thus providing interoperable support for existing test collections. This is the same idea discussed in the following paper:

Ryan Clancy, Toke Eskildsen, Nick Ruest, and Jimmy Lin. Solr Integration in the Anserini Information Retrieval Toolkit. Proceedings of the 42nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2019), July 2019, Paris, France.

Except we use Elasticsearch instead of Solr.

Deploying Elasticsearch Locally

From here, download the latest Elasticsearch distribution for you platform to the anserini/ directory (which as of 7/31/2022 is v8.3.3).

Unpacking:

mkdir elastirini && tar -zxvf elasticsearch*.tar.gz -C elastirini --strip-components=1

To make life easier, disable Elasticsearch's built-in security features. In the file elastirini/config/elasticsearch.yml, add the following line:

xpack.security.enabled: false

Start running:

elastirini/bin/elasticsearch

If you want to install Kibana, it's just another distribution to unpack and a similarly simple command.

Indexing and Retrieval: Robust04

Once we have a local instance of Elasticsearch up and running, we can index using Elasticsearch through Elastirini. In this example, we reproduce experiments on Robust04.

First, let's create the index in Elasticsearch. We define the schema and the ranking function (BM25) using this config:

cat src/main/resources/elasticsearch/index-config.robust04.json \
 | curl --user elastic:changeme -XPUT -H 'Content-Type: application/json' 'localhost:9200/robust04' -d @-

The username and password are those defaulted by docker-elk. You can change these if you like.

Now, we can start indexing through Elastirini. Here, instead of passing in -index (to index with Lucene directly), we use -es for Elasticsearch:

sh target/appassembler/bin/IndexCollection \
  -collection TrecCollection \
  -input /path/to/disk45 \
  -generator DefaultLuceneDocumentGenerator \
  -es \
  -es.index robust04 \
  -threads 8 \
  -storePositions -storeDocvectors -storeRaw

We may need to wait a few minutes after indexing for the index to "catch up" before performing retrieval, otherwise the evaluation metrics may be off. Run the following command to reproduce Anserini BM25 retrieval:

sh target/appassembler/bin/SearchElastic \
  -topics tools/topics-and-qrels/topics.robust04.txt \
  -topicreader Trec -es.index robust04 \
  -output runs/run.es.robust04.bm25.topics.robust04.txt

To evaluate effectiveness:

$ tools/eval/trec_eval.9.0.4/trec_eval -m map -m P.30 \
    tools/topics-and-qrels/qrels.robust04.txt \
    runs/run.es.robust04.bm25.topics.robust04.txt

map                   	all	0.2531
P_30                  	all	0.3102

Indexing and Retrieval: Core18

We can reproduce the TREC Washington Post Corpus results in a similar way. First, set up the proper schema using this config:

cat src/main/resources/elasticsearch/index-config.core18.json \
 | curl --user elastic:changeme -XPUT -H 'Content-Type: application/json' 'localhost:9200/core18' -d @-

Indexing:

sh target/appassembler/bin/IndexCollection \
  -collection WashingtonPostCollection \
  -input /path/to/WashingtonPost \
  -generator WashingtonPostGenerator \
  -es \
  -es.index core18 \
  -threads 8 \
  -storePositions -storeDocvectors -storeContents

We may need to wait a few minutes after indexing for the index to "catch up" before performing retrieval, otherwise the evaluation metrics may be off.

Retrieval:

sh target/appassembler/bin/SearchElastic \
  -topics tools/topics-and-qrels/topics.core18.txt \
  -topicreader Trec \
  -es.index core18 \
  -output runs/run.es.core18.bm25.topics.core18.txt

Evaluation:

$ tools/eval/trec_eval.9.0.4/trec_eval -m map -m P.30 \
    tools/topics-and-qrels/qrels.core18.txt \
    runs/run.es.core18.bm25.topics.core18.txt

map                   	all	0.2496
P_30                  	all	0.3573

Indexing and Retrieval: MS MARCO Passage

We can reproduce the BM25 Baselines on MS MARCO (Passage) results in a similar way. First, set up the proper schema using this config:

cat src/main/resources/elasticsearch/index-config.msmarco-passage.json \
 | curl --user elastic:changeme -XPUT -H 'Content-Type: application/json' 'localhost:9200/msmarco-passage' -d @-

Indexing:

sh target/appassembler/bin/IndexCollection \
  -collection JsonCollection \
  -input /path/to/msmarco-passage \
  -generator DefaultLuceneDocumentGenerator \
  -es \
  -es.index msmarco-passage \
  -threads 8 \
  -storePositions -storeDocvectors -storeRaw

We may need to wait a few minutes after indexing for the index to "catch up" before performing retrieval, otherwise the evaluation metrics may be off.

Retrieval:

sh target/appassembler/bin/SearchElastic \
  -topics tools/topics-and-qrels/topics.msmarco-passage.dev-subset.txt \
  -topicreader TsvString \
  -es.index msmarco-passage \
  -output runs/run.es.msmacro-passage.txt

Evaluation:

$ tools/eval/trec_eval.9.0.4/trec_eval -c -m recall.1000 -m map \
    tools/topics-and-qrels/qrels.msmarco-passage.dev-subset.txt \
    runs/run.es.msmacro-passage.txt

map                   	all	0.1956
recall_1000           	all	0.8573

Indexing and Retrieval: MS MARCO Document

We can reproduce the BM25 Baselines on MS MARCO (Doc) results in a similar way. First, set up the proper schema using this config:

cat src/main/resources/elasticsearch/index-config.msmarco-doc.json \
 | curl --user elastic:changeme -XPUT -H 'Content-Type: application/json' 'localhost:9200/msmarco-doc' -d @-

Indexing:

sh target/appassembler/bin/IndexCollection \
  -collection JsonCollection \
  -input /path/to/msmarco-doc \
  -generator DefaultLuceneDocumentGenerator \
  -es \
  -es.index msmarco-doc \
  -threads 8 \
  -storePositions -storeDocvectors -storeRaw

We may need to wait a few minutes after indexing for the index to "catch up" before performing retrieval, otherwise the evaluation metrics may be off.

Retrieval:

sh target/appassembler/bin/SearchElastic \
 -topics tools/topics-and-qrels/topics.msmarco-doc.dev.txt \
 -topicreader TsvInt \
 -es.index msmarco-doc \
 -output runs/run.es.msmarco-doc.txt

This can take potentially longer than SearchCollection with Lucene indexes.

Evaluation:

$ tools/eval/trec_eval.9.0.4/trec_eval -c -m recall.1000 -m map \
    tools/topics-and-qrels/qrels.msmarco-doc.dev.txt \
    runs/run.es.msmarco-doc.txt

map                   	all	0.2307
recall_1000           	all	0.8856

Elasticsearch Integration Test

We have an end-to-end integration testing script run_es_regression.py for Robust04, Core18, MS MARCO passage and MS MARCO document:

# Check if Elasticsearch server is on
python src/main/python/run_es_regression.py --ping

# Check if collection exists
python src/main/python/run_es_regression.py --check-index-exists [collection]

# Create collection if it does not exist
python src/main/python/run_es_regression.py --create-index [collection]

# Delete collection if it exists
python src/main/python/run_es_regression.py --delete-index [collection]

# Insert documents from input directory into collection
python src/main/python/run_es_regression.py --insert-docs [collection] --input [directory]

# Search and evaluate on collection
python src/main/python/run_es_regression.py --evaluate [collection]

# Run end to end
python src/main/python/run_es_regression.py --regression [collection] --input [directory]

For the collection meta-parameter, use robust04, core18, msmarco-passage, or msmarco-doc, for each of the collections above, respectively.

Reproduction Log*