forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_node.js
158 lines (144 loc) · 5.04 KB
/
train_node.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Training of a next-char prediction model.
*/
import * as fs from 'fs';
import * as os from 'os';
import * as path from 'path';
import * as argparse from 'argparse';
import {maybeDownload, TextData, TEXT_DATA_URLS} from './data';
import {createModel, compileModel, fitModel, generateText} from './model';
function parseArgs() {
const parser = argparse.ArgumentParser({
description: 'Train an lstm-text-generation model.'
});
parser.addArgument('textDatasetName', {
type: 'string',
choices: Object.keys(TEXT_DATA_URLS),
help: 'Name of the text dataset'
});
parser.addArgument('--gpu', {
action: 'storeTrue',
help: 'Use CUDA GPU for training.'
});
parser.addArgument('--sampleLen', {
type: 'int',
defaultValue: 60,
help: 'Sample length: Length of each input sequence to the model, in ' +
'number of characters.'
});
parser.addArgument('--sampleStep', {
type: 'int',
defaultValue: 3,
help: 'Step length: how many characters to skip between one example ' +
'extracted from the text data to the next.'
});
parser.addArgument('--learningRate', {
type: 'float',
defaultValue: 1e-2,
help: 'Learning rate to be used during training'
});
parser.addArgument('--epochs', {
type: 'int',
defaultValue: 150,
help: 'Number of training epochs'
});
parser.addArgument('--examplesPerEpoch', {
type: 'int',
defaultValue: 10000,
help: 'Number of examples to sample from the text in each training epoch.'
});
parser.addArgument('--batchSize', {
type: 'int',
defaultValue: 128,
help: 'Batch size for training.'
});
parser.addArgument('--validationSplit', {
type: 'float',
defaultValue: 0.0625,
help: 'Validation split for training.'
});
parser.addArgument('--displayLength', {
type: 'int',
defaultValue: 120,
help: 'Length of the sampled text to display after each epoch of training.'
});
parser.addArgument('--savePath', {
type: 'string',
help: 'Path to which the model will be saved (optional)'
});
parser.addArgument('--lstmLayerSize', {
type: 'string',
defaultValue: '128,128',
help: 'LSTM layer size. Can be a single number or an array of numbers ' +
'separated by commas (E.g., "256", "256,128")'
}); // TODO(cais): Support
return parser.parseArgs();
}
async function main() {
const args = parseArgs();
if (args.gpu) {
console.log('Using GPU');
require('@tensorflow/tfjs-node-gpu');
} else {
console.log('Using CPU');
require('@tensorflow/tfjs-node');
}
// Create the text data object.
const textDataURL = TEXT_DATA_URLS[args.textDatasetName].url;
const localTextDataPath = path.join(os.tmpdir(), path.basename(textDataURL));
await maybeDownload(textDataURL, localTextDataPath);
const text = fs.readFileSync(localTextDataPath, {encoding: 'utf-8'});
const textData =
new TextData('text-data', text, args.sampleLen, args.sampleStep);
// Convert lstmLayerSize from string to number array before handing it
// to `createModel()`.
const lstmLayerSize = args.lstmLayerSize.indexOf(',') === -1 ?
Number.parseInt(args.lstmLayerSize) :
args.lstmLayerSize.split(',').map(x => Number.parseInt(x));
const model = createModel(
textData.sampleLen(), textData.charSetSize(), lstmLayerSize);
compileModel(model, args.learningRate);
// Get a seed text for display in the course of model training.
const [seed, seedIndices] = textData.getRandomSlice();
console.log(`Seed text:\n"${seed}"\n`);
const DISPLAY_TEMPERATURES = [0, 0.25, 0.5, 0.75];
let epochCount = 0;
await fitModel(
model, textData, args.epochs, args.examplesPerEpoch, args.batchSize,
args.validationSplit, {
onTrainBegin: async () => {
epochCount++;
console.log(`Epoch ${epochCount} of ${args.epochs}:`);
},
onTrainEnd: async () => {
DISPLAY_TEMPERATURES.forEach(async temperature => {
const generated = await generateText(
model, textData, seedIndices, args.displayLength, temperature);
console.log(
`Generated text (temperature=${temperature}):\n` +
`"${generated}"\n`);
});
}
});
if (args.savePath != null && args.savePath.length > 0) {
await model.save(`file://${args.savePath}`);
console.log(`Saved model to ${args.savePath}`);
}
}
main();