forked from dcunhas/FCN.tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 1
/
TensorflowUtils.py
239 lines (184 loc) · 8.28 KB
/
TensorflowUtils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
__author__ = 'Charlie'
# Utils used with tensorflow implemetation
import tensorflow as tf
import numpy as np
import scipy.misc as misc
import os, sys
from six.moves import urllib
import tarfile
import zipfile
import scipy.io
def get_model_data(dir_path, model_url):
maybe_download_and_extract(dir_path, model_url)
filename = model_url.split("/")[-1]
filepath = os.path.join(dir_path, filename)
if not os.path.exists(filepath):
raise IOError("VGG Model not found!")
data = scipy.io.loadmat(filepath)
return data
def maybe_download_and_extract(dir_path, url_name, is_tarfile=False, is_zipfile=False):
if not os.path.exists(dir_path):
os.makedirs(dir_path)
filename = url_name.split('/')[-1]
filepath = os.path.join(dir_path, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write(
'\r>> Downloading %s %.1f%%' % (filename, float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(url_name, filepath, reporthook=_progress)
print()
statinfo = os.stat(filepath)
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
if is_tarfile:
tarfile.open(filepath, 'r:gz').extractall(dir_path)
elif is_zipfile:
with zipfile.ZipFile(filepath) as zf:
zip_dir = zf.namelist()[0]
zf.extractall(dir_path)
def save_image(image, save_dir, name, mean=None):
"""
Save image by unprocessing if mean given else just save
:param mean:
:param image:
:param save_dir:
:param name:
:return:
"""
if mean:
image = unprocess_image(image, mean)
misc.imsave(os.path.join(save_dir, name + ".png"), image)
def get_variable(weights, name):
init = tf.constant_initializer(weights, dtype=tf.float32)
var = tf.get_variable(name=name, initializer=init, shape=weights.shape)
return var
def weight_variable(shape, stddev=0.02, name=None):
# print(shape)
initial = tf.truncated_normal(shape, stddev=stddev)
if name is None:
return tf.Variable(initial)
else:
return tf.get_variable(name, initializer=initial)
def bias_variable(shape, name=None):
initial = tf.constant(0.0, shape=shape)
if name is None:
return tf.Variable(initial)
else:
return tf.get_variable(name, initializer=initial)
def get_tensor_size(tensor):
from operator import mul
return reduce(mul, (d.value for d in tensor.get_shape()), 1)
def conv2d_basic(x, W, bias):
conv = tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME")
return tf.nn.bias_add(conv, bias)
def conv2d_strided(x, W, b):
conv = tf.nn.conv2d(x, W, strides=[1, 2, 2, 1], padding="SAME")
return tf.nn.bias_add(conv, b)
def conv2d_transpose_strided(x, W, b, output_shape=None, stride = 2):
# print x.get_shape()
# print W.get_shape()
if output_shape is None:
output_shape = x.get_shape().as_list()
output_shape[1] *= 2
output_shape[2] *= 2
output_shape[3] = W.get_shape().as_list()[2]
# print output_shape
conv = tf.nn.conv2d_transpose(x, W, output_shape, strides=[1, stride, stride, 1], padding="SAME")
return tf.nn.bias_add(conv, b)
def leaky_relu(x, alpha=0.0, name=""):
return tf.maximum(alpha * x, x, name)
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
def avg_pool_2x2(x):
return tf.nn.avg_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
def local_response_norm(x):
return tf.nn.lrn(x, depth_radius=5, bias=2, alpha=1e-4, beta=0.75)
def batch_norm(x, n_out, phase_train, scope='bn', decay=0.9, eps=1e-5):
"""
Code taken from http://stackoverflow.com/a/34634291/2267819
"""
with tf.variable_scope(scope):
beta = tf.get_variable(name='beta', shape=[n_out], initializer=tf.constant_initializer(0.0)
, trainable=True)
gamma = tf.get_variable(name='gamma', shape=[n_out], initializer=tf.random_normal_initializer(1.0, 0.02),
trainable=True)
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=decay)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(phase_train,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, eps)
return normed
def process_image(image, mean_pixel):
return image - mean_pixel
def unprocess_image(image, mean_pixel):
return image + mean_pixel
def bottleneck_unit(x, out_chan1, out_chan2, down_stride=False, up_stride=False, name=None):
"""
Modified implementation from github ry?!
"""
def conv_transpose(tensor, out_channel, shape, strides, name=None):
out_shape = tensor.get_shape().as_list()
in_channel = out_shape[-1]
kernel = weight_variable([shape, shape, out_channel, in_channel], name=name)
shape[-1] = out_channel
return tf.nn.conv2d_transpose(x, kernel, output_shape=out_shape, strides=[1, strides, strides, 1],
padding='SAME', name='conv_transpose')
def conv(tensor, out_chans, shape, strides, name=None):
in_channel = tensor.get_shape().as_list()[-1]
kernel = weight_variable([shape, shape, in_channel, out_chans], name=name)
return tf.nn.conv2d(x, kernel, strides=[1, strides, strides, 1], padding='SAME', name='conv')
def bn(tensor, name=None):
"""
:param tensor: 4D tensor input
:param name: name of the operation
:return: local response normalized tensor - not using batch normalization :(
"""
return tf.nn.lrn(tensor, depth_radius=5, bias=2, alpha=1e-4, beta=0.75, name=name)
in_chans = x.get_shape().as_list()[3]
if down_stride or up_stride:
first_stride = 2
else:
first_stride = 1
with tf.variable_scope('res%s' % name):
if in_chans == out_chan2:
b1 = x
else:
with tf.variable_scope('branch1'):
if up_stride:
b1 = conv_transpose(x, out_chans=out_chan2, shape=1, strides=first_stride,
name='res%s_branch1' % name)
else:
b1 = conv(x, out_chans=out_chan2, shape=1, strides=first_stride, name='res%s_branch1' % name)
b1 = bn(b1, 'bn%s_branch1' % name, 'scale%s_branch1' % name)
with tf.variable_scope('branch2a'):
if up_stride:
b2 = conv_transpose(x, out_chans=out_chan1, shape=1, strides=first_stride, name='res%s_branch2a' % name)
else:
b2 = conv(x, out_chans=out_chan1, shape=1, strides=first_stride, name='res%s_branch2a' % name)
b2 = bn(b2, 'bn%s_branch2a' % name, 'scale%s_branch2a' % name)
b2 = tf.nn.relu(b2, name='relu')
with tf.variable_scope('branch2b'):
b2 = conv(b2, out_chans=out_chan1, shape=3, strides=1, name='res%s_branch2b' % name)
b2 = bn(b2, 'bn%s_branch2b' % name, 'scale%s_branch2b' % name)
b2 = tf.nn.relu(b2, name='relu')
with tf.variable_scope('branch2c'):
b2 = conv(b2, out_chans=out_chan2, shape=1, strides=1, name='res%s_branch2c' % name)
b2 = bn(b2, 'bn%s_branch2c' % name, 'scale%s_branch2c' % name)
x = b1 + b2
return tf.nn.relu(x, name='relu')
def add_to_regularization_and_summary(var):
if var is not None:
tf.summary.histogram(var.op.name, var)
tf.add_to_collection("reg_loss", tf.nn.l2_loss(var))
def add_activation_summary(var):
if var is not None:
tf.summary.histogram(var.op.name + "/activation", var)
tf.summary.scalar(var.op.name + "/sparsity", tf.nn.zero_fraction(var))
def add_gradient_summary(grad, var):
if grad is not None:
tf.summary.histogram(var.op.name + "/gradient", grad)