forked from huawei-noah/SMARTS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
__init__.py
78 lines (69 loc) · 2.84 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# MIT License
#
# Copyright (C) 2021. Huawei Technologies Co., Ltd. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
from pathlib import Path
import gym
from benchmark.agents import load_config
from smarts.core.scenario import Scenario
from smarts.zoo.agent_spec import AgentSpec
def gen_config(**kwargs):
scenario_path = Path(kwargs["scenario"]).absolute()
agent_missions_count = Scenario.discover_agent_missions_count(scenario_path)
if agent_missions_count == 0:
agent_ids = ["default_policy"]
else:
agent_ids = [f"AGENT-{i}" for i in range(agent_missions_count)]
config = load_config(kwargs["config_file"], mode=kwargs.get("mode", "training"))
agents = {agent_id: AgentSpec(**config["agent"]) for agent_id in agent_ids}
config["env_config"].update(
{
"seed": 42,
"scenarios": [str(scenario_path)],
"headless": kwargs["headless"],
"agent_specs": agents,
}
)
obs_space, act_space = config["policy"][1:3]
tune_config = config["run"]["config"]
if kwargs["paradigm"] == "centralized":
config["env_config"].update(
{
"obs_space": gym.spaces.Tuple([obs_space] * agent_missions_count),
"act_space": gym.spaces.Tuple([act_space] * agent_missions_count),
"groups": {"group": agent_ids},
}
)
tune_config.update(config["policy"][-1])
else:
policies = {}
for k in agents:
policies[k] = config["policy"][:-1] + (
{**config["policy"][-1], "agent_id": k},
)
tune_config.update(
{
"multiagent": {
"policies": policies,
"policy_mapping_fn": lambda agent_id: agent_id,
}
}
)
return config