-
Notifications
You must be signed in to change notification settings - Fork 106
/
Copy pathtest_fatezero.py
286 lines (237 loc) · 9.69 KB
/
test_fatezero.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import os
from glob import glob
import copy
from typing import Optional,Dict
from tqdm.auto import tqdm
from omegaconf import OmegaConf
import click
import torch
import torch.utils.data
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import (
AutoencoderKL,
DDIMScheduler,
)
from diffusers.utils.import_utils import is_xformers_available
from transformers import AutoTokenizer, CLIPTextModel
from einops import rearrange
from video_diffusion.models.unet_3d_condition import UNetPseudo3DConditionModel
from video_diffusion.data.dataset import ImageSequenceDataset
from video_diffusion.common.util import get_time_string, get_function_args
from video_diffusion.common.logger import get_logger_config_path
from video_diffusion.common.image_util import log_train_samples
from video_diffusion.common.instantiate_from_config import instantiate_from_config
from video_diffusion.pipelines.p2p_validation_loop import P2pSampleLogger
# logger = get_logger(__name__)
def collate_fn(examples):
"""Concat a batch of sampled image in dataloader
"""
batch = {
"prompt_ids": torch.cat([example["prompt_ids"] for example in examples], dim=0),
"images": torch.stack([example["images"] for example in examples]),
}
return batch
def test(
config: str,
pretrained_model_path: str,
dataset_config: Dict,
logdir: str = None,
editing_config: Optional[Dict] = None,
test_pipeline_config: Optional[Dict] = None,
gradient_accumulation_steps: int = 1,
seed: Optional[int] = None,
mixed_precision: Optional[str] = "fp16",
batch_size: int = 1,
model_config: dict={},
verbose: bool=True,
**kwargs
):
args = get_function_args()
time_string = get_time_string()
if logdir is None:
logdir = config.replace('config', 'result').replace('.yml', '').replace('.yaml', '')
logdir += f"_{time_string}"
accelerator = Accelerator(
gradient_accumulation_steps=gradient_accumulation_steps,
mixed_precision=mixed_precision,
)
if accelerator.is_main_process:
os.makedirs(logdir, exist_ok=True)
OmegaConf.save(args, os.path.join(logdir, "config.yml"))
logger = get_logger_config_path(logdir)
if seed is not None:
set_seed(seed)
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_path,
subfolder="tokenizer",
use_fast=False,
)
# Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_path,
subfolder="text_encoder",
)
vae = AutoencoderKL.from_pretrained(
pretrained_model_path,
subfolder="vae",
)
unet = UNetPseudo3DConditionModel.from_2d_model(
os.path.join(pretrained_model_path, "unet"), model_config=model_config
)
if 'target' not in test_pipeline_config:
test_pipeline_config['target'] = 'video_diffusion.pipelines.stable_diffusion.SpatioTemporalStableDiffusionPipeline'
pipeline = instantiate_from_config(
test_pipeline_config,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=DDIMScheduler.from_pretrained(
pretrained_model_path,
subfolder="scheduler",
),
disk_store=kwargs.get('disk_store', False)
)
pipeline.scheduler.set_timesteps(editing_config['num_inference_steps'])
pipeline.set_progress_bar_config(disable=True)
pipeline.print_pipeline(logger)
if is_xformers_available():
try:
pipeline.enable_xformers_memory_efficient_attention()
except Exception as e:
logger.warning(
"Could not enable memory efficient attention. Make sure xformers is installed"
f" correctly and a GPU is available: {e}"
)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder.requires_grad_(False)
prompt_ids = tokenizer(
dataset_config["prompt"],
truncation=True,
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
).input_ids
video_dataset = ImageSequenceDataset(**dataset_config, prompt_ids=prompt_ids)
train_dataloader = torch.utils.data.DataLoader(
video_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4,
collate_fn=collate_fn,
)
train_sample_save_path = os.path.join(logdir, "train_samples.gif")
log_train_samples(save_path=train_sample_save_path, train_dataloader=train_dataloader)
unet, train_dataloader = accelerator.prepare(
unet, train_dataloader
)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
print('use fp16')
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# These models are only used for inference, keeping weights in full precision is not required.
vae.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("video") # , config=vars(args))
logger.info("***** wait to fix the logger path *****")
if editing_config is not None and accelerator.is_main_process:
validation_sample_logger = P2pSampleLogger(**editing_config, logdir=logdir, source_prompt=dataset_config['prompt'])
# validation_sample_logger.log_sample_images(
# pipeline=pipeline,
# device=accelerator.device,
# step=0,
# )
def make_data_yielder(dataloader):
while True:
for batch in dataloader:
yield batch
accelerator.wait_for_everyone()
train_data_yielder = make_data_yielder(train_dataloader)
batch = next(train_data_yielder)
if editing_config.get('use_invertion_latents', False):
# Precompute the latents for this video to align the initial latents in training and test
assert batch["images"].shape[0] == 1, "Only support, overfiting on a single video"
# we only inference for latents, no training
vae.eval()
text_encoder.eval()
unet.eval()
text_embeddings = pipeline._encode_prompt(
dataset_config.prompt,
device = accelerator.device,
num_images_per_prompt = 1,
do_classifier_free_guidance = True,
negative_prompt=None
)
use_inversion_attention = editing_config.get('use_inversion_attention', False)
batch['latents_all_step'] = pipeline.prepare_latents_ddim_inverted(
rearrange(batch["images"].to(dtype=weight_dtype), "b c f h w -> (b f) c h w"),
batch_size = 1,
num_images_per_prompt = 1, # not sure how to use it
text_embeddings = text_embeddings,
prompt = dataset_config.prompt,
store_attention=use_inversion_attention,
LOW_RESOURCE = True, # not classifier-free guidance
save_path = logdir if verbose else None
)
batch['ddim_init_latents'] = batch['latents_all_step'][-1]
else:
batch['ddim_init_latents'] = None
vae.eval()
text_encoder.eval()
unet.eval()
# with accelerator.accumulate(unet):
# Convert images to latent space
images = batch["images"].to(dtype=weight_dtype)
images = rearrange(images, "b c f h w -> (b f) c h w")
if accelerator.is_main_process:
if validation_sample_logger is not None:
unet.eval()
validation_sample_logger.log_sample_images(
image=images, # torch.Size([8, 3, 512, 512])
pipeline=pipeline,
device=accelerator.device,
step=0,
latents = batch['ddim_init_latents'],
save_dir = logdir if verbose else None
)
# accelerator.log(logs, step=step)
accelerator.end_training()
@click.command()
@click.option("--config", type=str, default="config/sample.yml")
def run(config):
Omegadict = OmegaConf.load(config)
if 'unet' in os.listdir(Omegadict['pretrained_model_path']):
test(config=config, **Omegadict)
else:
# Go through all ckpt if possible
checkpoint_list = sorted(glob(os.path.join(Omegadict['pretrained_model_path'], 'checkpoint_*')))
print('checkpoint to evaluate:')
for checkpoint in checkpoint_list:
epoch = checkpoint.split('_')[-1]
for checkpoint in tqdm(checkpoint_list):
epoch = checkpoint.split('_')[-1]
if 'pretrained_epoch_list' not in Omegadict or int(epoch) in Omegadict['pretrained_epoch_list']:
print(f'Evaluate {checkpoint}')
# Update saving dir and ckpt
Omegadict_checkpoint = copy.deepcopy(Omegadict)
Omegadict_checkpoint['pretrained_model_path'] = checkpoint
if 'logdir' not in Omegadict_checkpoint:
logdir = config.replace('config', 'result').replace('.yml', '').replace('.yaml', '')
logdir += f"/{os.path.basename(checkpoint)}"
Omegadict_checkpoint['logdir'] = logdir
print(f'Saving at {logdir}')
test(config=config, **Omegadict_checkpoint)
if __name__ == "__main__":
run()