-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlotGraph.nb
5002 lines (4901 loc) · 267 KB
/
PlotGraph.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.4' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 273422, 4994]
NotebookOptionsPosition[ 266060, 4870]
NotebookOutlinePosition[ 266399, 4885]
CellTagsIndexPosition[ 266356, 4882]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[IndentingNewLine]",
RowBox[{"i", "=", "\"\<1\>\""}]}]], "Input",
CellChangeTimes->{{3.7189653096279993`*^9, 3.71896531659063*^9}, {
3.7190233199724407`*^9, 3.7190233227523203`*^9}, {3.719023459730196*^9,
3.719023459835949*^9}},ExpressionUUID->"2501906a-f655-458d-b2ce-\
e2457b83ee95"],
Cell[BoxData["\<\"1\"\>"], "Output",
CellChangeTimes->{{3.718965313228619*^9, 3.718965317184566*^9},
3.7190230456552677`*^9, 3.719023289921773*^9, 3.7190233244641438`*^9,
3.719023389957951*^9, 3.719023460464567*^9, 3.71902349217817*^9,
3.7226109449366083`*^9},ExpressionUUID->"984963f5-b633-4d27-bbfb-\
5101e800ed11"]
}, Open ]],
Cell[BoxData[
RowBox[{"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"X", "=",
RowBox[{"ReadList", "[",
RowBox[{
"\"\</home/andrey/CLionProjects/NumericalMethods/Lab5/files/X.txt\>\"",
",", "Number"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Y", "=",
RowBox[{"Read", "[",
RowBox[{
"\"\</home/andrey/CLionProjects/NumericalMethods/Lab5/files/Y.txt\>\"",
",", "Number"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Val", "=",
RowBox[{"Read", "[",
RowBox[{
"\"\</home/andrey/CLionProjects/NumericalMethods/Lab5/files/Val.txt\>\"\
", ",", "Number"}], "]"}]}], ";"}], "\[IndentingNewLine]"}]}]], "Input",
CellChangeTimes->{
3.7175582783089867`*^9, {3.71896423775758*^9, 3.718964283441304*^9}, {
3.718964358952951*^9, 3.718964361871513*^9}, {3.718964406183736*^9,
3.718964420995255*^9}, {3.718964616812179*^9, 3.718964665844926*^9}, {
3.718964698322205*^9, 3.71896480108946*^9}, {3.718964850906197*^9,
3.7189648693837337`*^9}, {3.718964925806987*^9, 3.718964974337285*^9}, {
3.7189650907626467`*^9, 3.7189650950621157`*^9}, {3.718965161327216*^9,
3.7189651650859957`*^9}, {3.7189653238818703`*^9,
3.7189653614031973`*^9}, {3.719022994591955*^9, 3.719023118017075*^9}, {
3.722049149346471*^9, 3.722049288285388*^9}, {3.722049321484284*^9,
3.722049340474339*^9}, {3.722050043567712*^9, 3.722050078063942*^9},
3.722050242811791*^9, {3.722050351190694*^9, 3.722050379152031*^9}, {
3.7220504567926607`*^9, 3.722050473516799*^9}, {3.722610485786104*^9,
3.72261049010746*^9}, 3.722612998805874*^9, {3.7231162695186167`*^9,
3.7231162786226883`*^9}, {3.723116523883053*^9,
3.723116525226817*^9}},ExpressionUUID->"d237cf0e-6ff5-4bea-ae0c-\
a359f34c198e"],
Cell[BoxData[{"Val", "\[IndentingNewLine]", "X", "\[IndentingNewLine]", \
"Y"}], "Input",
CellChangeTimes->{{3.722613034151923*^9, 3.7226130347594967`*^9}, {
3.7226140072703667`*^9, 3.722614007819006*^9}, 3.72261453582019*^9, {
3.7226145855461073`*^9,
3.7226145868061647`*^9}},ExpressionUUID->"6eb1d342-65a4-476f-bf97-\
0e14181bcfe3"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"6", "\.13"}]], "Input",
CellChangeTimes->{{3.723122143494545*^9,
3.7231221436771107`*^9}},ExpressionUUID->"e6f57b22-47c5-4e37-bd54-\
e93150b3b4e1"],
Cell[BoxData[
RowBox[{"-", "10"}]], "Output",
CellChangeTimes->{
3.722614008338366*^9, {3.722614153181588*^9, 3.722614172951831*^9},
3.722614261596046*^9, 3.7226143457144747`*^9, 3.722614452732689*^9,
3.7226144978324747`*^9, {3.722614562605069*^9, 3.722614608690927*^9},
3.7231142208383293`*^9, 3.7231146494591627`*^9, 3.7231148009947557`*^9,
3.723115499039131*^9, 3.723115575062282*^9,
3.7231162825706673`*^9},ExpressionUUID->"c15e20d4-12be-46b9-aeed-\
3b30a04ac896"],
Cell[BoxData[
RowBox[{"-", "10"}]], "Output",
CellChangeTimes->{
3.722614008338366*^9, {3.722614153181588*^9, 3.722614172951831*^9},
3.722614261596046*^9, 3.7226143457144747`*^9, 3.722614452732689*^9,
3.7226144978324747`*^9, {3.722614562605069*^9, 3.722614608690927*^9},
3.7231142208383293`*^9, 3.7231146494591627`*^9, 3.7231148009947557`*^9,
3.723115499039131*^9, 3.723115575062282*^9,
3.723116282572503*^9},ExpressionUUID->"71d8d425-c88d-466f-ba35-\
7e91690ed61d"]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{3.722612905721305*^9,
3.722613032115487*^9},ExpressionUUID->"8c0e1a4c-603d-41bb-a6cd-\
be560cc9374f"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"x", "*", "x"}], "-", "15"}], "]"}], ",",
RowBox[{
RowBox[{"-", "4"}], "/", "x"}], ",",
RowBox[{"-",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"x", "*", "x"}], "-", "15"}], "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"r", "=",
RowBox[{"{",
RowBox[{"X", ",", "Y", ",", "Val"}], "}"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"r", "=",
RowBox[{"ReadList", "[",
RowBox[{
"\"\</home/andrey/CLionProjects/NumericalMethods/Lab5/files/Val.txt\>\"\
", ",",
RowBox[{"{",
RowBox[{"Number", ",", "Number", ",", "Number"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"ListDensityPlot", "[",
RowBox[{"r", ",",
RowBox[{"Mesh", "\[Rule]", "0"}], ",",
RowBox[{"MeshFunctions", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Function", "[",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}], ",",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"x", "*", "x"}], "-", "15"}], "]"}]}], "]"}], ",",
RowBox[{"Function", "[",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",",
RowBox[{
RowBox[{"x", "*", "y"}], "+", "4"}]}], "]"}]}], "}"}]}], ",",
RowBox[{"MeshStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Lighter", "[", "Red", "]"}], ",",
RowBox[{"Lighter", "[", "Green", "]"}]}], "}"}]}]}], "]"}], ",",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["x1", "2"], "-",
SuperscriptBox["x2", "2"], "-", "15"}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"x1", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x2", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"ContourStyle", "\[Rule]", "Green"}]}], "]"}], ",",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x1", " ", "x2"}], "+", "4"}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"x1", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x2", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"ContourStyle", "\[Rule]", "Blue"}]}], "]"}]}],
"]"}]}]}]], "Input",
CellChangeTimes->{{3.722050091288033*^9, 3.72205009409883*^9}, {
3.722050124833469*^9, 3.722050143018557*^9}, {3.722050177958302*^9,
3.722050179533774*^9}, {3.7220502200924797`*^9, 3.722050268478195*^9}, {
3.722050515657289*^9, 3.7220505292501698`*^9}, {3.722610348548815*^9,
3.722610349531124*^9}, {3.7226108882206173`*^9, 3.722610889488168*^9}, {
3.7226117646896753`*^9, 3.722611804454281*^9}, {3.722611868011341*^9,
3.722611874054599*^9}, {3.7226120185347652`*^9, 3.72261202342397*^9}, {
3.722612336411126*^9, 3.7226123531294603`*^9}, {3.722612396874487*^9,
3.722612404874084*^9}, {3.722612714329934*^9, 3.7226127449342012`*^9}, {
3.7226128540675373`*^9, 3.722612864931851*^9}, {3.722612924201746*^9,
3.722612932127792*^9}, {3.72261313094191*^9, 3.722613136788825*^9}, {
3.722613247744224*^9, 3.722613247983768*^9}, {3.722613808752804*^9,
3.7226138378299294`*^9}, {3.7226139890787687`*^9,
3.7226139934896193`*^9}, {3.7226143581358232`*^9, 3.722614360308526*^9}, {
3.72261446752113*^9, 3.722614473682085*^9}, {3.723114678620027*^9,
3.7231147302623034`*^9}, {3.723114866481326*^9, 3.723114875869503*^9}, {
3.723114916152555*^9, 3.723114920219556*^9}, {3.723115039191937*^9,
3.72311504398053*^9}, {3.723115224977764*^9, 3.723115228782055*^9}, {
3.723115591055236*^9, 3.7231156253363247`*^9}, {3.723115721160966*^9,
3.723115722321451*^9}, {3.723115784636429*^9, 3.723115832676482*^9},
3.723115955624502*^9, {3.723116041090275*^9, 3.723116041925489*^9}, {
3.7231161300930347`*^9, 3.723116239499393*^9}, {3.723116607609969*^9,
3.723116637228867*^9}, {3.723116745830114*^9, 3.723116750860409*^9}, {
3.723118314498746*^9, 3.7231183207857037`*^9}, {3.723118765081231*^9,
3.723118765550291*^9}, {3.723179954956896*^9, 3.7231800255261087`*^9}, {
3.723180062705476*^9, 3.723180133288437*^9}, {3.723180213424233*^9,
3.723180307495216*^9}, {3.72318055710684*^9, 3.723180568340736*^9}, {
3.723180600609434*^9, 3.7231806846494627`*^9}, {3.723180900036772*^9,
3.7231809952318296`*^9}, {3.723181037539823*^9, 3.723181085258191*^9}, {
3.723181121426306*^9, 3.723181145121935*^9}, {3.7232753680931787`*^9,
3.723275389159856*^9}, {3.7232754878005953`*^9, 3.7232756299352627`*^9}, {
3.723275844030039*^9, 3.7232758552925463`*^9}, {3.723276059352849*^9,
3.7232760933376617`*^9}, {3.723276281204419*^9,
3.723276281906823*^9}},ExpressionUUID->"7fc08de6-9eea-499f-bfdf-\
2c17bf0f53e9"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwBoQRe+yFib1JlAgAAAEkAAAACAAAAfedN8v//I8CJSbUSaHAiQOZ7FvXb
/CPAOlop+v9sIkBOEN/3t/kjwBmrZcmXaSJAIDlw/W/zI8DcMgEfx2IiQMKK
kgjg5iPABptIpSRVIkAILtcewM0jwC5PHBLbOSJAlHRgS4CbI8C5fb0KNQMi
QKsBc6QANyPAGx7xQZqVIUAFZUcyGV0iwC49PchppiBAE9jFbKKRIcA1Yjlv
zIkfQFLDmmMpyiDAPTZrwc3KHUB77z1skOMfwHMu/Ap83xtAuHeaaq9PHsB8
wv1low0aQE6SVSD+mRzAT6WyXukKGEBHnb1OSOwawIPUi6nsBBZApsd51nNb
GcD+YODEGBMUQF6ElBXPqBfAmJvJ9c3hEUB+YAOuCxMWwAdwp0VBcw9AAC0f
v0OFFMCTGRs9CeoKQHwWQV6FfhTAtoJornPVCkD3/2L9xncUwNM47xXVwApA
7tKmO0pqFMDM0YVzfJcKQNt4LrhQTxTAm7FKC1tECkC2xD2xXRkUwBtg2LdD
nAlAbVxco3etE8AJ6YiUEEQIQNqLmYer1RLAQ1nMLHlsBUDTxSCsYM8SwGCB
Va1QVgVAzP+n0BXJEsADQwSHGEAFQL5zthmAvBLAbD6tf3gTBUCiW9OrVKMS
wLVkV+RzuQRAaisN0P1wEsCbW5vqJwIEQPvKgBhQDBLApSnlIL2EAkD0BAg9
BQYSwAfOM1gpbAJA7j6PYbr/EcByzwU+fVMCQOCynaok8xHA3fy+h9ohAkDE
mro8+dkRwDqvYqRfvQFAjGr0YKKnEcB78gb+Lu8AQBwKaKn0QhHA4p0APO1z
/j9evsyMIjwRwAxdyEfeNf4/oXIxcFA1EcBIjnmmZ/f9Pybb+jasJxHAtgKs
Czl5/T8vrI3EYwwRwICtIi2Id/w/Qk6z39LVEMA4Z25d91v6P4QCGMMAzxDA
y7SfEvUV+j/HtnymLsgQwHnw07pRz/k/TB9GbYq6EMATxMO5EkD5P1bw2PpB
nxDAkauTYQ4Z+D9pkv4VsWgQwEqzgVl6ovU/rEZj+d5hEMAhK9p7JU/1P+76
x9wMWxDAzbnwIKn69D9yY5GjaE0QwJSQQh8ATvQ/fDQkMSAyEMCsTcv6D+Ty
P77oiBROKxDAZ+WXvKeF8j8Bne33eyQQwJcFiHF9JfI/hgW3vtcWEMCNGj5n
bV/xPx6tk5ge9w/Af1TNjrxw7z+jFV1feukPwBfYDU3fj+4/KH4mJtbbD8A+
PppCvqjtPzFPubONwA/AMLd9ATvF6z+2t4J66bIPwK4cehBZx+o/OiBMQUWl
D8A0HtFUJcDpP0Tx3s78iQ/A06bo5dyQ5z/JWaiVWHwPwNaFdmSTZeY/TsJx
XLRuD8DextKHVCrlP9MqOyMQYQ/AdD1Slyjc4z9YkwTqa1MPwOfNoHYMd+I/
3fvNsMdFD8DDEzT9V/XgP2Jkl3cjOA/AMpp3xjed3j/mzGA+fyoPwBNHGht7
6to/azUqBdscD8Al5+G5CaHWP3IFuad2Dw/AlZa+jOhu0T961UdKEgIPwK5a
CVd4m8M/FbOhhgv8DsA2Jg9kw1qaPyNeINU=
"]], LineBox[CompressedData["
1:eJwVkGtMU3cAR5FQOhW9bSlCEWzvvQoRi6J29QHz/3MIuCjiqiDiA9vBxInh
oSwooDhLfSJj1Q5wFQfKguicqDyimQG062Sr+KBs4gNEFCm6CRQqFJj7cHI+
nuTQqiRFvKODg0PoB/53bf+tYpV9MgKy5X89Kyojgrd7Jwu4FL621axtjLlD
aGOC/KwrhbzeL2bFyx6QgBLFZrmEQpw1sX5VXQtZkhmkMUopbMnfuaIzv5WE
R/n8HLOIgrG9vM2v5ynZGMAz94RQ8E2tTC1+30Z2v+iYwY+lULu3Y+/O8g5y
6Nc/w0u3U6i6F/1qqO0F0RVUp32cTuF63Y3pBu5LcnXl0dvr8ymk7D4uLpB2
kbdX58WXNFBwrHCJV45YyMhxr1xZE4UNlqn25U97iMs252uGxxQ2N4xmtNW8
ITO9HzlZrBRS5d7Jszb9QyrrcV8k5GF2q29Psfwd6fHrSlGF8hD7pf3FxL4+
0u/+JKdiJQ+jNaWXs5f1k2Gn+4X9Ch406rmP7p3oJxOeXa/TxPLwY9qKJ0Hz
rMRXm8evSOehfuOQb5JygKiG5Zf7zvPgbMwV2gpspKUx5181xYdpv5lJP2kn
J5boQyKn8OE+8pE+3GwnistXi2Z48yHbf0xyYcoIMek6lhn8+OD2mmJ5uhFi
UC4t5IbykXW45E1D3iipGrQvPZLJx3B3zi97FjpAx+7S5r3mw+nhIffG4XGI
zFDJixoEuD0+O+KSlAOdXug8+LsAkaIz1bJgDsw3Dc1rmgRYJjL2la/nIMpp
VtqkJwLYt6kr4zQcROf2XckeEEAdF6yXPOMgplg9d+tMV1hunrD8neuMLQ1l
UlmeK54qg6O2tXORONHCmGKEWDVg227eOgHiCoPOudsNgdye2otjk5FRE7yG
OuWOMLLHpfAuH8lliVXyOSI4Rru5eba6wsVxgWp2pyecg5JWf2J3Q8iOtSf9
tF5Y7c6l7jh6wKPWOylk+jR0zzCKha0ifJd6KD+gRYz3Sn634t5UKDQR/voq
CejQWLeq097w26COPJtFY92mFPOiTWKYX44v0UYyWNhAX/A+LYFJ1blUIGZx
MKu3NDmDRrvTT7aTDIvmYfG55fto9JclXBL5sIg4//wbyQEaIovFi/ZnUXlF
/fDuERpxO3sH5wSyEJ+qvy8tojF0YOxi+DoWliTPiLYaGj7nRJ6H81h4cGue
+w/QWBTW2uSiZaG3S0rGDdFY+fqHg9/qWBxVtKN5hEaKv8T6vf5DL+q6VyaH
wY1rPk1lFSzeBrqvNgoZKAzzNbd+Y6ENDauOmc8gPsEatLyRhVRWlyZdwCB9
QnVfo4lFobxFOLqYgX7VYuWDZhbB8LGe+ZRBlxlBzztY/OGxC52fMxhKd+yL
f8WiqaWXU/Xhy6Spt8pfd7NI21d+QbOewbzYMPd371i4yiae9lUyCBk33rTL
yiJ3x+OuwTgG0aV31DYbC2PXXDdjAoOvQo4FZtpZuGmnsQWJDLJehfeOjbE4
/Nk1QUIyg/8AWsDuSw==
"]]},
Annotation[#, "Charting`Private`Tag$12874#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVjHc8FWoDgM8wjnOM45gZOVZKFDIq6n0lXFfhlnUTGQ0kZEZGxdV2syrh
JmkYV7lFuNX7llFG9ibbQUaOcWznu98fz+/5Pf88iu5+x86QCATC5//4vyPH
js5xucpY5pxiXmpqF2BdllzsWVfGCvwkz8cZXcCK3r/0bkUZR6gWeD5/0gWY
+/w3/OaVMedqnUFJThf4fCuRMsBSxjqOs/KTpV2AsqtjK/6mjLNMbibEd3eB
5CBXyytp//3V+D0b5bpBHjEwm2DwX9eeKvJ41g14z5jrbHFWwu/8ix8nDvYA
sc5Kn6wERXy7dNfxEJXv4Fj5I48dNUy8C+5PK4zqA5d/HvC5N6yAm7g3Qg8L
D4CS0Efer6y34h+d4gf2jAwAq0Q75maqHHZiZS69Zg0C84wPVr9MyWDFjm4B
T55h8PxLWHug0xasKpsdzaM9AlxikyUaXkrhoiqTivmnoyDKlVxAE5PEp79w
pT5ojwGCpgIy+UMcexmGGPw+Pw66b6dez2tj4Bl7pw7J3ZOgpZKZ79rAwBMK
Ys279k6COu6LRolqBi6vdBo5YjwJPgYWb7nynoET2zQ8045Pgiynljzbpwy8
5WL4o2uXJoH3TqHGDX8G/ktiRie6fBKs1VyRthFk4BNvseUplykgR/XMWTgk
invWaR6WOdPA5WPdHSUjUazrQwqkFE2DJwHa/jZ6ong4U6OpHk+DbT2r+vlq
ophf91p2aOc02J1/t8JDUBSfzf8+uJ8yAw5ZvelvbqPjU1+CvyZ4zQCvxE2J
Qk86TjAILGvb8xOc11Pn7ZETwWe9zjxrCJoFAbylL0JERDC/uLXg+OVZ0G1l
Xdi3Jowz9tq228fNglvBZ/60GBPG6rGl2+wTZkFuUeaWkkJhrNbNvw8WzIIJ
PaldKWbC2I6TfMx8Yhac0+dxsPYXwuvRS/4up9nAly9p5Ye7ELZ6UhJh6cMG
Ie2K6XF2Qrg8VLkSBLFBXAgY/LBfCNeb4j0HY9ngeXH4eQ1eIaz5T2ZWUjYb
jOqzowUeCeJ802NdOSw28DDoe1leTsO3/rFwaPSfA2dfGtibvaPhjOK+XIWw
OeC9JYFcnUvDmgelo0OuzgH/NROX+gQaFhszbt6fOAciUI5Y1ykatpAlmiq8
nQPJ5sFRM2tUPEaNf+G6MgeqHARtt+hSsWIafVjs1jyo/nqGmK5GxU25vlc9
k+ZB3T5UsFWWivfdtBGqSp8HzbIBAiokKj4vxVBMfzUP+vs7Pu5qFMD/6io8
L2qbB8vnnu447COAxSu2jeUoLwD1S/u5vtkUHO9fMrBatQDwdyv14fsU7Oc2
KnGheQHYm3jYOdz8r01jZya/L4BrwnfygC8F38nc3SeyuAC6sr870PdScF6e
hvC88iK40XTldWEtP55yFqPsj10ELPUvbgtzfLgzbFuznzUHRNzrueM5yofZ
oWFTWSc5gMH5+a63gw8fqLpUMOrFAQc/SQtXvufD/GKeqY9iOSDFwbssJY4P
61Tp7qgs44DDsUJiBjJ8WD99N7+B+hJ48v14RZgxL86rWx08L7kMdEZ0Vlt1
efFtk2j/ryrLoOKHqJbWdl6ce8F+h/6eZcBaakhjCfPilrWcFFObZaDOOBJ4
vJcHy+Tz1xrcXgb/mB1W0gzlwaR15r44nhVQ8Ur3ykA+GWuWOvdi3lVgVyxW
bJhJxs55jqmxkquA9X5u8n4SGVsPCW86q60CSs1rh6PhZMwpP3numMUqODqi
sbvMnIx5i6N8zeJXQbu0al/SEAkz7QQuXpNbA2NXJYzMpUl4+dqxtXTLdUCN
fPUziUrCDhSNt1vc1sGuSxZPB9aJ+P1d4+3vQtZBiG8kNXyQiKW8xfzsstYB
n9NoZ34uEZs+JI+qra0DFd2iYMYBInb5EUA+/2YDuLNsX313I+B8tspEG+SC
uMEZd3VbAn7GXhkQduKC3N4bkqFmBFx77+VmYDAXzDW/j6TvJGDt3RE+Fblc
QIq2eBg3zkWfnv1uX0kjQKA90fSbEBcxx/vP0CIJsCxlu+m4/Qby9rvpeiGQ
CClOYx5Eow0UZV12MiKGCO2Zz6/JKG4g/geapJwkIpzLVcZHJteR4QVO0sm3
RLgDbzUsjF5HgqmaqvpLRPjwh7h2+Ms1xPvLRj0xhgRZr1qsk+6uoSeT3U3i
KSSoG5zomx+whiwUnh6yfEGCDVyR/D6jNVTG7RFVqSNBPgmamknTKoqQDTiY
IEWGwYAoL7i6gnI1Ryw/FpHhZx5sqNq/gvbUAI5RDRnSa6JOHKxYQcl3f/Fh
9ZFhvu36A//4FTQkvNTxL4UHjngtMdqUVpAxj+9CtAsPPJY8TfnLchnppf97
+ieDF2pNdC3szuCg9w1+zkLZfDBoVnOHVCwHPTLTrrb4wAdLlq46b3pzkI9G
Y9HHdj5ozKdeVbeXg04meonYUfnhMeXwB16ti8ginRNkEcQPg51l9j+lLSId
Yu9rqi0Flp329b01t4AKoup8tS5S4Ob5z1kXuxZQfVaQY3o8BcaFe9PgiwUk
x1Yq+LWGAh8+KOvtPbSAxJtLAraaCsCyphPRkuHz6HxMmE+6BRVudha82XCd
R5/x7cIX56nw0ABpfMR8Hm2H1Ae0eCqsncm1eSMxjz4MdJYOtVBhL21N0aZw
DnXQ7Q04HjTINU2ruDnORpHbLpFpDwTh4aM/l/0b2IglmOltiwThDVsTTcdi
Nup4ZL4uMi4I6R6TKdti2WhzetVidL8QVLpieK5cgY0eTcS8hiwheLisR2DD
fhZlJtows+1EYEHus31fDGeRuFv9tx23RKB0mp9XAnMWKasR3rkiEdi+xJdo
2foT5Qp57l2WoEPVy/b0jNUZdFS+Q4dwnQ6XnX74aVfMoLvfhmWNsumwziiq
ofLuDHKYyNo+8IkOgzafxc8wZ5CnaWiU1yYdfr66KAjNp1Fn4qrX5whReN/9
pk8rfRo9ObPieCVDFHqZyNd5dk8hld8Ta0o/ikI6r+nthAtTKBm3/ZpLYsBT
N5IFhpMmkfk5Q/nWewy4Hr+HL25gAg1NBmzfXS0GG/2+nJHJnUBBGaO5yvNi
8KmNU2VB4ATi8XV7UCsvDn9lxMR28E2g9+6MZfNgcZia0kzaoTmO/pgd7b2s
KQF9Qs66f+CMoSdWLmVJzhIQOqx++g2PIU1Tx7Xr8RJwXFrpavjxMZTsP/JJ
fl4C6qdf5NaGsZCQ7XTPmy+SkBrJe8rVhIU23Mhz7lxJ+N059eOCIAtFKCQN
qeyVgrEKnyLlM0fRhxQVRPxbCrZk0dd9q0bQRKDhjPgzaeif82pZVGwY1TmY
l6d0yEAtYd+YQwNDKERTLq9dQRayAzSEA/8eQm/fTL/O9JKFAUY5yq3mQ0i0
5oIVmSQHgxuyrO5HDKLIN1asm+byUF/XravKYhBl5kgHP8iQh5yHCqeXJAdR
/uOY4uxFeRjqnh7mWDiAyP45x/nzt8L5Hzst9Or6kWyVyU0RGSYMevvS5f7Z
fgSbaEk7rZiQE6katEToR5q9nXoZMUy4TFd4XKrXhyS/eSu/m2PCdX3G4oHH
vSjriGiU57AijCT8SX28rxdNsNxFGpWV4GY1jUlo7UG0ljmC8FklSHTmtfxM
6UFRhxxZp2aVIF/McqZZQBeyPGF1ZHyrCrx+JLj4hWAXek6/fPuGvwqkSM7V
Ul50ooSYlvfVFSqQmjPJqenpQG4KLr8VBavC2wGeghohHeiinUzCy2ZVKGg0
qniX3oEcIg8O1OtsgyINfUesTdsR49x0r8fGNnjvoZP76/425OVqJqHjqQYZ
7p2houFtyG5KVGC+XQ2KLzZltRS0ovtm5Em9T9uhtGzlsoN0C0o77CGs0agO
U0eMhUv/aUZfdZnXRt12QpmCj8oyR5uRoxu/BXtlJ5Q3LrHqvdqEvjXPKpUc
1IR/UfVOH5BrQhfC5Cc8pzShQmth2F/Fjcg+eKzt96xd0KTe3uJTewNqmT3B
KBPXgmZuNkExtAZk/PXJEiFKC/6yYPHYFNajrWkFofVTWvCIzIHF6pw65KvL
E9LSqw2t/tZn3umrRc+dz12XOqUDf4NallZitcgjRMucO64D7/pfMum6VY0y
d2Y2aAjqwv8BAqz2NA==
"]], LineBox[CompressedData["
1:eJwVi3k4FFoDxi1jH7uyZxn7UkSEcg4S3RBS4SqlIUlliWy5LVIi6RJZIpI2
Rbik1DklI8q+NSP7PpbGOmP/+v54n9/zPr/3VfK66OzNwcbGRvmT/7PTn/ax
KawOkJ06InllDTGvSjchhrMedBduVt9/Y4BfNHVbFHbXg2jxhM9aIgb4r8hf
0e2l3wExU63iXOROTFfr+bAW/wO4IJ+D4b/1cXxrD0uF3AD8r5W43T+nj39o
9gWFSDSBCSFao0W4Hvbv6Ct6NNUExizT+Cv49HAsDFjy8moG8u8fvukCO7D6
VIBBvGkLkJP80kGp0MUsi1mnnIIW4Epp9Wti18Xf0gIDSsVaAd/TZHdXFx3s
axX0upveCvZePRScL6KNd6fPff99tA2c+d24eTpcC/P+DqJzVrcBaLZ9KX1c
E7/ICFbXyWwHXz56nGz9qYEjGPPWkKcDGBdH9cq7aeC/9l8iuwR3AJ93z0FA
rzqmz17KjTrYCc4ZcplzMdXwe5tFlFTRCVhh1abVcWr4zqOQ3nxSFzAwbOu+
oqiGtQ+EyjasdgG7935Bom6q2P/x5QfyhVSQPc3hnDxLwnuWmKX6UjRgYhq8
wsomYaJdWKt1DA3wCnhtbDqQ8GtmmPAFj27Q0dLnF1KujGccIuI+EXvAQFrV
3ZUcJfwpf+VZa1gPyCv6fNLVUwknrkRQRod7QPiSxN04RSW8oyCSU/hjL1C3
GKNLPVfE76I/fSoy6gfBSzZnRVMU8OMXGw2V/v3AgG+9S1tHAd9uN++pzusH
I8ke+yYo27CrFlrtEhoAGSJd1HHObXi5A+1mGxsAen5p1/5Jl8ODbGy2/PKD
QM32ryKdfXK4Xhsekzg8CIga92VaGLI44xoO0UCDYI+M+ssPh2Sxqe7nEse0
IcCVbVBBVpbBu9o7Uz/VDYGdhoYh9X3SWC9yKkJnbQjYF5Q6X82Wxmp1kla8
p4aB/gOJi/8pSGNx7wttSGsEMMZ8km31pLAQMaZC9/gI+DADmnYwJTF/aXpm
5r0RsPa1XUkZSWI29prTlxdGgFH4sQMCzpJ4Kkt2YfunUbDNL8/G8MZWPGal
/zOLMQqmb50aK3faigfp+6v4SWPARf2hlajSVkzdHRQzemsM1JZa3jT+sgVT
2r9JZDuNg99OGvZVgltwDjF0l+DIBCgkKgVU1ojjjNJ46UhJOngzVnvweo44
TnXPXR8/QAe39mjU9ISL44TnP2q+vqGDUxUjyUBPHIftIx2NCpsExinOU65P
xLBzVHPopMA0CGlnPY54LIrtSaPububTQNVmlLjluii2rV81rw2YBiaqFpmS
ZFFsLqXO86RjGmjHcffZaYpi7bIrae45M4B7q7apxTsRzBG65RdZmgGiSDzk
2AZh7H7yZes7Qwaoni49PZImjEv+AnVERwYoO5orxvISxl4KZ8vLYhngdH1x
ktaqEP7yrSqJsPDn70cMO2MghG/Ikq3zG2fB60mbgWxMxL+4ls1YE7PgwPh1
1S8pRGzIuLvTjmsOKD5cD/Q7S8TDXysUFszmwC5Oje9Qgoj3XRBYsXoxByis
ZRHKRQFM+FzyZujGPHiQsj3Cdw8/9nhl89Q4Zx7wW+kf75Xkx2UPfmXGv58H
FRJPIyrn+TDZjzvOYHYeZHwzH35YyIdrxN1P3zixABKl/u5sVubDsT7sUiST
RVA3kvxiUIEX8xAdr3nNLIGKlDSuwcPc2FXdHRvxMUFnzshSvwk3fmlJ3uRX
YQJM8zKUU+TGDuFhV0rdmGCgJ8Fl3zQXTh19HE6oYQI1GWcz6ztcWO3zbGBB
Jgtc5g/19m4k4LBfq8UR5SxgnCnU31hBwPVMLoZDCwtE1gron80l4AvbZS4w
uZeB4OvFAd0QAi7PtPSzDVoGMfyVg6PbCNg6NNmLbrsCKNxO/hkRnDj1/qPc
T6dXQE/e9dofPpx4vPBZ/7/RK8DUQcRc/TAnThj6cMKsbAX8jClPd9bhxO2O
w+4JCqsgpFjQLLSfA5O1dx3evrQKho5q+iYd4sA3+jutgp6sg0uplmke+9lx
b+XB82FV6+CtUQKhzZgdmybj1OiOdRAUsNp+SpMdM6xfTtzh2QAt/v6vaons
+MSrK/eenNsA5P98il63s2HTUJXudoNNoFZ/Pv6tLxte5jKplPVig1nnrZI8
4SYqCJpvyL7ABsXv21CSNTaRS9/rQaVINkiVbZOfEtlExe+UiRopbDAqwZbO
M7iBfM4RPQ0pbPCtwB2zoZsbqL25j2CvxQ5zg0tbR9rWUXFmrGP0HDu8kflC
e8etNfRdPHZMmI0DZpfGrLwOXEOj8TejcwU5oI1buZy9xxqSi4op/KrBAZ1f
7jOZ1F9Dtz2u8wp4ckCC9qJETu8qOikfjdO+c0Du2lzCy72rSCQnRO9tPie0
5zPLeSiygrQlQ2otSzhhS/uv0Scby2j/vUsn2hEnZL1vptVOLaOof4ITmDRO
6PjQbd21bhmNewaO7xUlQPKO218ybiwjrHj+cf0VAkyyDnwetMZCF/PIIsNH
ueCzC3aJYIOJEsPTsxJPc8FI21UDfgYTvXFs1DAJ4IJ2tqVPRgaYaGbD2CIx
jgvmnP7i11jDRP5/CwTtruKCnUdEz5ITmchPoqQtQYkbBlLiEuOUmcgndjN1
1xQ3HDkuEcl2dAnFHjck9bO44bbAwqqiA0uowPBs0R0uHijmGRrvv3cJjQy2
1vZt44EFJ+IuC6kuITIoYMU58cDwrnyV2YVF5MWyc+8t54HrJxasFNIW0Qm/
DPlb13hhVoqgQvLwAlql8jXO3uWFBVIhgRy0BfTwQHi0RwYvXFAaPB/VtIBa
NFz79Et54cyWMJWk9wto39iW3F/DvJA916bB8P4C0iTfV9lpywcNlVTSveEC
Wjh+W7tHiB/apzLCN5/OozinUBODLAHol90jujd+Dv37Q8u/8IUAlNmMGzC8
PoeybPqyVSsEYGeCbfiu8DlUvNeWINUqAD/7zTc4nplDPzVlmtZ4iFAnWrFw
xmoOaXB8IlOCifBk++Kdqo1ZRCnhSnI7KAhNCtPGDkXMIprDobe9q0JwLeTU
qEssA4nNRAuJ8QhD4zG528evMpDSN1+jfHFhGB+9vbI4nIHMo/bEftMRhknP
nluc8Weg8OEhVVFPYRhYWmMk4cxAM2U7vfOqheHeewWavtsYaEprPNBrvwgs
JOeOZIb8Rl3fbzJihEVhSohH0juOGZRi/sj6yFZR2KAquISXppHz27IMVXlR
mGxmOdRKn0aNqUP7KFqikOXWqSbeNo0opyzSefaLwmsONClC/jQqZ65Z3In6
430txLNtplEq6VLyvQlRKFbZRzr7YAodifQyyqgWg5e28z21OjCJUh9JcDPr
xGB+W4UhN5xEnYjScbhZDHYcdCQ0GU2iowTtEMGeP55j/kCwyiRyvTtfenXp
T5/7hrjYJpF7Toz+GU1xGH/Phmn3jo5OVhfoGN4Th8bSe6zNdOnIX2BSudFd
Ah5ukBf1Vp9ACq8oqdz0LXDx2+Ms9eNjKPKd1WHhTEl4c0UoOrF4BAUU+Jcb
7ZCGlulV7lEuw4jIYey1fUQGmhqxQs/zDSHr8y4PtJLl4PWSvI9M+gCSqpS/
aK2yDZYYOcbcWutH/wbdvq/XpQCF66/2XpPoR86xh3QflStCPiGSsUdeL9L6
O+ZI/hUlyP3sQn+NdQ/qHOXLSz6iDL9aH6NyTHejRq8RCzEFEiTenlysotDQ
AOEZ64EyCd70rl1q+UxDCwW+RdJqJEhfra0Zr6Ih6clJOSXdP/tZ83rZUhoi
B88xd5iR4PXpU05pOTS0cmPztf0xEtxvRbkyFEZDak+lZeLu/fGSetl1OjRk
YtPdTEwmwZPHKmO2atCQ3UTWraRUEiwSXJXxJtFQoK7iYtojErzzjOcwjwwN
Vf2n1lzwigS/evD+9OShIWeKQezXWhK86Pzz/MlBKvL2Xdxj+50EfbZeHq7t
oaIw/or5740kyPs4bU2PSkWPHExPtXWQoL3DqCBvMxWNd8I9g0MkWOmfmlX3
kYpWwjjmvcdIMOmELI95JRUJyn59MUEnQcnblsSyMira6WkjOTtLgrt3iw/l
v6Iia3a+xkuLJMgvRSxVeEZFrk/qY1gsEmT2W8tk5VGRn3WCWdQaCUZ9mJCU
yaaiK2P2c5ubJChzRulVejoV/Q83Gill
"]]},
Annotation[#, "Charting`Private`Tag$12874#2"]& ],
TagBox[
{RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVzms0lHkAx/ExmWKo55kLGSxjBkXb7GZTqcYJlbIZtnSRaNwOSSXTSW6l
luh+oVUz67QRalFbijiZ/2+jpEwqSxahC2KLEseaDNu++J7P269NyK614UwG
g7H6a/+b3Os9NDkpxpHVt7mRMSL0JJqOtI2LsXizg3YyWgQZ3TlaPiaGoCi8
LnubCEKXGN2uz2K0O+lZ14aIcO/oWYOuHjGmqlbl264XwUDywgoaMSQ+ltw2
FxGy9sh/TFGJUZFcxXaeIkKRnuIyY6EYFlaf3JTnbMAK93QSBIogkUofbisQ
gtdyPzr3jA2cQ1x21R+xxtpqZajDIyGkC7b/qXn0DRIHpdGn31hDIRlnJ3Va
4E6cMuq6jxWS7unC86abQ3Z2vXDigiV88m8G9bHN4JlTJVv13hw//3Xs6nt9
UxTUxjcrAgSYkHfVmPH4CErNMmm4MhPnVXUjmlcc7JdPuWbEM8W0mMIVbgoK
jLnWxCONj0yBhdSwn40kU7egtP18lB2KvKZoYmN0MkT3II6PxkWDJk1gY+B5
wRKvKD7qn6UpkrLZaNsnuePrw4fqhpdRwHI2ymqkNwIFfFjIW8o9fjXEji1b
8uJKeDDsy8iilxug9diF9KImLjz867+Nj2ah8b6wWN7Ahfzg+hLfDSzUTxY+
NanjYoqHfrrZMhbUijJByl0uol1LDuzjsZAb0Fjkl8fF7bCNbxUV+oiaM/2p
LoYLVYCqfxZTH18epZj5GnOR79AtrEplYljfQMqaysW0Jz9scohmYsD1VHDl
JAexDSzX5HVMdN3M+d32Mwcvx9XprTZM1Cgrl479zcHi6yGXt1bp4XjUsDy3
kIPEoakTkkEGLNmRV4fdOXidw1j6QTFBgtT1x0VLOTAOfOjZ4TxBLsXOi/F1
5mDVyfiCiFEdsW/TLiiexUEZs9jIJV5Hvis+URNqzEFKiWhuRtw4cZeVdj5v
orEoYmfgaICWpDLNqhkNNB7fusgdMdGS2rKkAslDGvEfGyt/ahgja6xX7jha
SYNXU13BXTZGNnxs0bpdpHGmKDN4huBfsu3shMmNSBpepQf9E3JHSPHK0LGO
YBo2c1oT7XxGyIC2tt04gIam4qPwqnaYxIaeyYv0ppF12t2aIRsmSfNt5wmd
aBR7P9ZSb4eI+l0GXzaHRkR39t3CtCGil/NhNNGWRjYrY3ey3RA5zCpXvzCl
ccLcNWLH1k/EqiTzvNUohQN+mpN3YwZJnkng1oQ+CjNbpnt3nhogs/fb2ze3
UXB1Vbqrr3wg83wqSk+AwvflyXpL7v9DysoPJfTdpHDNMoH2r+0ni4Vr3Fbk
U5hv9czPDn1k+aeOJ+NHKDQWvOtuP91L6vyvnNuURKE5bW9YZngPkd3bveXW
TgodD56n+zl2k0bHJWI6mMIe6drs2e1vyKZM/f7t6yj0an7baxz3mrz8ovmj
dgWFat583caRLhISlh0nXkTBSRn3YGFOB+mpl7secKTA8zS3SOxvJdudHVlt
lhTsel9VGF5qJrGsisK9FIVzv6iPv9v5jCQ0eXpxmV//Nxtu3KeqJiallw4b
jc/AAnsqrHqzkvwHbKxFVQ==
"]], LineBox[CompressedData["
1:eJwBcQSO+yFib1JlAgAAAEYAAAACAAAAufTEn2L8DkAwgDbY35qmvxLufg4S
Bw9Advi4VMtayr8hyGg2pBMPQI/yYytlNNO/MKJSXjYgD0Bk9WzCTsHXvz58
PIbILA9AYJFzS+WR279NViauWjkPQMjhqeAq7N6/XDAQ1uxFD0AncrJyn/ng
v3nk4yURXw9AuX7jfnOp47+Ivs1No2sPQLbRWOf64OS/lpi3dTV4D0C7wbwk
xgfmv7RMi8VZkQ9AcXmOH5gs6L/utDJlosMPQAKrDGVh/eu//Y4cjTTQD0Bb
6xv8SN7svwxpBrXG3A9AXsP+e+C47b8pHdoE6/UPQHI2HXArXe+/ssJA0hkU
EEAu2yfsnzbxv+wq6HFiRhBAX2b85Avz87/0F92Fq0wQQP64o7GARPS/+wTS
mfRSEECGhDHa0ZT0vwrfu8GGXxBAoXVL3Twy9b8nk48Rq3gQQMJc+idvYfa/
Yvs2sfOqEEAGyI0U+Jj4v9fLhfCEDxFAzoHWIniV/L+UPp1FVRYRQBf9CJ1N
1vy/UrG0miUdEUA0gYwgrBb9v86W40TGKhFAB/LOXxCW/b/GYUGZB0YRQH2J
ou3Dj/6/tvf8QYp8EUD76oWwejgAwJYjdJOP6RFABNSIF8v7AcBVe2I2msMS
QMUJgE+vLAXAlp0UBvfJEkBVGaC3NEMFwNa/xtVT0BJARBnI86lZBcBWBCt1
Dd0SQPxphLJkhgXAWI3zs4D2EkCEZEOdIN8FwFqfhDFnKRNA67+U69mNBsBg
w6YsNI8TQN5hQ1Zp4QfAbAvrIs5aFEBO9vhr1mcKwB+rxpYG6hVAOwfsua3/
DsB7uENTD5sXQEc/egyZzxHAcKZstjYvGUACWBUVGtsTwAwCN2Iu5RpABjxv
UD38FcBFbVSVKpMcQFAXBw/KAhjAGLkdb0UkHkDqJcgfFNsZwJJyiJEw1x9A
+WER6lLRG8BShk8tnbYgQCFGXxW2nh3AKluEVaR9IUBXXXHWOV0fwNbmCaKT
VSJAOMMhrB2eIMDOYuVBEh8jQId98qNweyHA4QSn+JUiI0DV+x+lSH8hwPSm
aK8ZJiNAT6rigiCDIcAZ6+scIS0jQLKzhNTPiiHAZHPy9y87I0Afm8LSLJoh
wPqD/61NVyNA628aT+C4IcAmpRkaiY8jQBgHuOIt9iHAOUfb0AyTI0Cd/CCi
AfohwEzpnIeQliNAi1LhQNX9IcBxLSD1l50jQE9Wuxx8BSLAvLUm0KarI0Du
OxdQyBQiwFLGM4bExyNAk0ZHt1ozIsBlaPU8SMsjQCw0wXUsNyLAeAq388vO
I0CZNtcU/joiwJ1OOmHT1SNAQ0Am9aBCIsDo1kA84uMjQMwYdEDlUSLA+ngC
82XnI0DQ1/IFtlUiwA0bxKnp6iNAdX+prIZZIsAyX0cX8fEjQBM0C54nYSLA
RQEJznT1I0CNbdzo92QiwFijyoT4+CNAyOgxFchoIsBqRYw7fPwjQBWTHiOY
bCLAfedN8v//I0CJSbUSaHAiwPolEVo=
"]]},
Annotation[#,
"Charting`Private`Tag$12874#3"]& ], {}}, {{}, {}, {}, {}, {}}}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-10, 10}, {-20.10559820135076, 20.047558762172798`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.723275542261662*^9, 3.723275581961009*^9},
3.723275630809083*^9, {3.72327584460177*^9, 3.7232758556275806`*^9}, {
3.723276065869542*^9, 3.723276094034916*^9}, {3.723276282556877*^9,
3.723276306875708*^9}},ExpressionUUID->"64c18960-1a46-4544-b5f5-\
c131809794e7"],
Cell[BoxData[
GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJx13T+oJVcZAPCb5BKnGMM4DsNkmEzmzxZWNmI9V7RJYyFY2gQsRKKVYMBi
KwsRBBUC6UyphRAwWBjeg1iJFtYpclGClXAR1CtE1re75zvh/eIMwslv75u3
s2+/nZlzvu87zq9+92vffPZwOPz++cPh8fj0eHD7/8cVL3jGEx7xgHvc4RY3
uMYVLnGBj/iArzf3fcFnHEf+fON8fMWHE9eHC1ziCte4wS3ucI8HPOIJz3jB
K36QbNytO+OCZzzhEQ+4xx1ucYNrXOESF/iIDzjiMXzBZxxH/nzjfHzFEY/5
+nCBS1zhGje4xR3u8YBHPOEZL3jFEY/e94y7ZWec8YRHPOAed7jFDa5xhUtc
4CM+4IjH8AWfcRz5843z8RVHPObrwwUucYVr3OAWd7jHAx7xhGe84BVHPPrc
9b5n3M0744RHPOAed7jFDa5xhUtc4CM+4IjH8AWfcRz5843z8RVHPObrwwUu
cYVr3OAWd7jHAx7xhGe84BVHPPre53PX+55xN+2MIx5wjzvc4gbXuMIlLvAR
H3DEY/iCzziO/PnG+fiKIx7z9eECl7jCNW5wizvc4wGPeMIzXvCKIx6dd/je
53PX+55xN+6MA+5xh1vc4BpXuMQFPuIDjngMX/AZx5E/3zgfX3HEY74+XOAS
V7jGDW5xh3s84BFPeMYLXnHEo/Ne5x2+9/nc9b5n3A07Y4873OIG17jCJS7w
ER9wxGP4gs84jvz5xvn4iiMe8/XhApe4wjVucIs73OMBj3jCM17wiiMeXXdx
3uu8w/c+n7ve94y7fmfscIsbXOMKl7jAR3zAEY/hCz7jOPLnG+fjK454zNeH
C1ziCte4wS3ucI8HPOIJz3jBK454dN3PdRfnvc47fO/zuet9z7jrdsYWN7jG
FS5xgY/4gCMewxd8xnHkzzfOx1cc8ZivDxe4xBWucYNb3OEeD3jEE57xglcc
8ei6s+t+rrs473Xe4Xufz13ve8ZduzM2uMYVLnGBj/iAIx7DF3zGceTPN87H
VxzxmK8PF7jEFa5xg1vc4R4PeMQTnvGCVxzxaN7DdWfX/Vx3cd7rvMP3Pp+7
3veMu2ZnrHGFS1zgIz7giMfwBZ9xHPnzjfPxFUc85uvDBS5xhWvc4BZ3uMcD
HvGEZ7zgFUc8mncz7+G6s+t+rrs473Xe4Xufz13ve8ZdvTNWuMQFPuIDjngM
X/AZx5E/3zgfX3HEY74+XOASV7jGDW5xh3s84BFPeMYLXnHEo3lf827mPVx3
dt3PdRfnvc47fO/zuet9z7irdsYSF/iIDzjiMXzBZxxH/nzjfHzFEY/5+nCB
S1zhGje4xR3u8YBHPOEZL3jFEY/WHZj3Ne9m3sN1Z9f9XHdx3uu8w/c+n7ve
94y7cmcs8BEfcMRj+ILPOI78+cb5+IojHvP14QKXuMI1bnCLO9zjAY94wjNe
8IojHq17se7AvK95N/Merju77ue6i/Ne5x2+9/nc9b5n3BU74xEfcMRj+ILP
OI78+cb5+IojHvP14QKXuMI1bnCLO9zjAY94wjNe8IojHs3jmkczj+E6sut4
rqM4j3Ue4Xucz1HvY8bRcWc84Iiv8AWfcRz5843z8RVHfOXrwgUucYVr3OAW
d7jHAx7xhGe84BVHfFnHZx2VdSzmJVwXdl3OdRHnpc4LfC/zueh9yTg67IwR
X+ELPuN8xOcb5+MrjvjK14cLXOIK17jBLe5wjwc84gnPeMErjviyLtS6POui
rEuxLsC8rHkx191c93De6Xu/710+97xPGVdhxws+4zjy5xvn4yuOeMvXhwtc
4grXuMEt7nCPBzziCc94wSuOeLPu2LpP6+6se7LuxLy/eVfzXuYdXPd13c11
D9/zfc/yueh9zDi77IxnHEf+fOM8fMURf/n6cIFLXOEaN7jFHe7xgEc84Rkv
eMURf9a5W2dsnad1dtY5WWdint88q3ku8wyu87rO5jqH80zf830v875mnJ13
xjjyr2+cj6844i9fDy5wiStc4wa3uMM9HvCIJzzjBa84v8+lI7/PpcM6d+uM
rfO0zs46J+tMzPObZzXPZZ7BdV7X2VzncJ7pvMD3OJ+z3vc+EYcbX4+vOL/v
xfXgApe4wjVucIs73OMBj3jCM17wivP9L/1c8v0v2b4K69qtK7au07o665qs
KzGvb17VvJZ5Bdd1XVdzXcN5qPMG3+t8znrfiyN/znjBV5zvf3G9uMQVrnGD
W9zhHg94xBOe8YJXnN//iD/7duybsG7dumHrNq2bs27JuhHz9uZNzVuZN3Dd
1nUz1zmclzpv8D3O56r3OePssjNecX4fJB7z9eMS17jBLe5wjwc84gnPeMEr
zvNd4s8+Mft07JOwTt06Yes0rZOzTsk6EfP05knNU5kncJ3WdTXXQZynOm/w
Pc7nqvc14+y6M+b5MPGXrx+XuMI1bnCLBzziCc94wSvO73tpzO97yfYl2hdm
X86ErUu3Lti6TOvirEuyLsS8vHlR81LmBVzHdd3NdRHnqc4b8hGf79zHjKt8
PuMRF7jEFa5xg1vc4R4PeMErzvmH8O192+dqn6F9XhO2z8E6c+t8rbO0zs06
I+s8zLOb5zTPZF7AdVzX2Vz3cB4ah+9lPhe9TxlHx52xwCWucI0b3OIO93jA
I57wjBf+HDn/mmwftX2s9hFO2D4a+xisI7eO1zpK69isI7KOwzy6eUzzTuYJ
XMd1Xc11jjh87/e9y+eg9ynjqtgZS1zhGje4xR3u8YBHPOEZL3jFcf9z3wj7
9u2btm/VvkH7tuybsW/BunHrdq2btG7NuiHrNsybm+c0L2XewHVc19Vc53De
6Xu/72E+J72vGXflzljhGje4xR3u8YBHPOEZL3jFEY/uW+K+Efbt2zdt36p9
g/Zt2Tdj34J149btWjdp3Zp1Q9ZtmGc3L2reyjyC67qus7nukc/fmQf4nuZz
1fuecVftjDVucIs73OMBj3jCM17wiiMe3TfHfUvcN8K+ffum7Vu1b9C+Lftm
7Fuwbty6XesmrVuzbsg6D/Py5k3NY5lXcJ3XdTfXQZyHOk/wvc7nrvc9467e
GRvc4g73eMAjnvCMF7ziiEf3bXLfHPctcd8I+/btm7Zv1b5B+7bsm7Fvwbpx
63atm7RuzToj60LM25tHNa9lnsF1X9fhXAdxnuq8wvc+n7ve94y7ZmdscYd7
POART3jGC15xxKP7hrlvk/vmuG+J+0bYt2/ftH2r9g3at2XfjH0L1o1bt2vd
pHVu1iVZN2Ie37yqeS7zDq4Duw7nOonzWucdvvf53PW+Z9y1O2OHezzgEU94
xgteccSj+9a5b5j7NrlvjvuWuG+Effv2Tdu3at+gfVv2zdi3YN24dbvWWVoX
Z92SdSTm9c2zmvcyD5G/P3bdznUW58HOQ3wP9DnsfdA4dOzxgEc84RkveMUR
j+6b6L517hvmvk3um+O+Je4bYd++fdP2rdo3aN+WfTP2LVg3bp2vdZnWzVnH
ZF2JeX7zrubB8vfHrhu7zuc6jPNg5yG+B/oc9j5oHDoOeMQTnvGCVxzx6L6d
7pvovnXuG+a+Te6b474l7hth37590/at2jdo35Z9M/YtWGduXbB1m9bRWddk
nYl5f/Ow5snMU7iu7Lqf6y7Oe513+N7nc9f7nnE37IwjnvCMF7ziiEf3jXXf
TvdNdN869w1z3yb3zXHfEveNsG/fvmn7Vu0btG/Lvhn7HKxLt27YOk7r6qxz
su7EOgDztPn8E9eHXYd2HdB1GOfBzkN8D/Q57H3QOHSc8IwXvOKIx/g+EY9h
95F1H0/3UZyw+4i5j5P76LiPiftI2MdvH7V9rPYR2sd1xPZJWMduXbF1nnFY
92QdinUC+fwT14fNg7gO7Tqg6zDOg52H+B7oc9j7oHHoOOMFrzji0X2z3bfY
fWPdt9N9E923zn3D3LfJfXPct8R9I+zbt2/avlX7Bu3zsi/Hvgnr2K0rts7T
ujvroKxTyeefuD5sHs48iOvQrgO6DuM82HmI74E+h70PGoeOC17xA74u4jHs
PtruY+w+shN2H0X3sXMfMfdxch8d9zFxHwn7+O2jto/1iO0Ts4/Hvgrr3OPI
n1MXZV2edVPWuezVGYTNw5kHcR3adUDXYZwHOw/xPdDnsPdB49BxxQ/49YhH
921332z3LXbfWPftdN9E961z3zD3bXLfHPctcd8I+/btm7bP1b5E+8bs47Gv
wjp3646tA7VOz7qqfH3YOgTzwObhzIO4Du06oOswzoOdh/ge6HPY++CCHR84
3t737v+PQPx+eMK7+8gm7+6jmLy7j1jy7j46ybv7SCQf8QHv9jEm7/b5xOfU
he7WJcf5J64P79bBpHE3D5zG3TxIGnfXAdO4Ow9O4+57YBoX/Mk4/NMfHx+f
un0ylhF/z6cRP4x4fDZ5un3rdz/8R/+H59Kvf+xf/+Lxf4z3v/4uPr/+5Hgm
jS+lX//o6d/rw/m+7+L93cff7tvXm889+YZTdvx+97/+ZTziHr94++XXP/3h
F3/+KNa1b7/w5Hh083Rs03X+8+ZXv3x89Nnx/Z7+/C43T8cXs+P7nb/xrxfe
ePTvqLu4/eCvr7/56p2rF957+6t3/16+9JXP/uXPd3H9/Tfefe/DR5/Jjq//
zvvvvPb+O3+POt3sV3764O5//0m/fr65//dwvomf05Mve+XtmyenvfbcbTi+
3w9+8rdv/ei/H4QPP/veb9767Ucf3KQx6nsP8zM/7j7/6OOvS97i6+K89P3y
een3y3XC4XQ9p3S9W7reLZz+PKf0593Sn3cLx/dLP69clxJOP89T+nlv6ed9
Sn8f+evT31fOS4TT3+cp/X3ndeJwiodTipctxcspxRN5jo+SX8Q9HvHLp/s/
lyk7/Xvg6+f7fjin630mjS+lz589xe8XP+f07zU7fr97X/8w/Hzyct9395d0
Pzml+0n69fxefPs/LWp73A==
"], {
{GrayLevel[0.8], EdgeForm[None],
GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNnXfcz+X3xz/v9RFKZGSUvbO3rGyyhexNosimgSSVGTJLhUSIKClFygyZ
CSW0JLRUvu1+1+t3nu/H5/PHeVxnX+c613ldn/u+dd8V6jus/VA/kUjceX0i
Ebj1Nkd3OergqJyjyFFZR0l46eRXxlEI7xNXFh/pXbpEFUdV8S2L/mZHuRzV
w1bN0Q2sWeDjOsqwKn9pcmYmbyVHlR1lcpQRORN+8vfwy4xfeUcVHGVAzox/
kjOVhy+PT05HdRzVhc+BXAe+tqObHGVzdDu81lqOajiq6SiroxsdVUd3O/6y
9WXtw5oN/5aOijoqkmarQZ4a+FSnV9XQZ0GXk3pz0bfSaXf5sKNH0Hegt1o7
wtcjri5n0Tmys9aGr83Zs9PzivRdfb2OvlWEr4DPdejudtSZ/pZDFp/XUR5H
DRzldlQ/Tc6D3I07016NHTVxdCtrfvhOCZuxjuTvxB7l0Eu+gz1uJuYW8jWG
b+QoH+st1N2VfbtSRyXOUYH6c5O3PjU35Exd8OnM3eiuejm609FIRy3QS9fb
USFshRM2tz0Sho+Cjgo4agY1R9cMfVN8e+Jfj3puphdlud/rsQtfbR2Nd9SO
vdTb7vSyKXnz09+m1Kq5LEKtmssa6AtTdxH4+Fy98WnO2QqyV3fq7UVPekLV
qK8QMXfS/wr0sjlnHu5oqqMniBuQsLns76gfq2ZWGGrlqJij1qyt4Ns4Kp4w
PPbDv3iar3Ah3MSYWeno5YRh4x56rNi+aXvWJo/eh4H4PujoIUft6XVJeq/Y
+A2QrRT2Uvi0Y5+65FK9JaixBLLyaL4nJWzGtD4KP8TRfQmbRc3lvY4G4z8R
X63CxISEzYvONAjf+uguOfrA0fv4yV8zdcqRHljPM7v8LqfF30HfJuDfAbkj
uVWLsDKZu32UWhtQeyPqv5+1EfZH8e/MXvXo093UNpH4BuyhuxhAD+twRwPo
YVt63ZU6HkvYrA9z9EDCZvTxhM2aVs3tlIRhQu/FUHybouudsJl+Ej/5673Q
HAo7mr1RCcPHyLT4Juw9Bf+uyOKfIGdP8vZCJwyMSBgmemN7KmGYGUH+EcjN
OUt3ztGU88VYaoas+GkJw3YPzq19xzoal7CZ06zPSKSwNh1ZfF/kafB9OO/o
tPOLH8PZG3O/o7G15OxduI9G2BuTty+5e1NrH2JasM847lR1zuSeVecseOkG
ws+C1zqbOMWPpxbV2Jqzt0aeQY7+7BHbNZf6zMjL2pDaK3IWnUlvx6qE4eER
ZPHCiuZ4TsLm+Ok0eRDyGvqh2X/G0fyEYWJ+IoWPjQmbgdcSqXldzz6HHB1O
pN4gvUmTHL1CTsUPIfcz8POoU+/fSnzX4L86YThbBU3kLPfQy6epfy7nm0ot
GxI2Z4scLYbXqhnUvK9LGAaECc3HQmgRuoXoF+D7Kv7HHB2nPtX9Luf4Gv4d
Rx+5d+olRwc920v9XEv/FpD3fnoqeYmjZxOGoQ309Qn0w6l7BPwSzrgBn0Wc
bRjnWku967mXV6HHqX8wdQ9JpN7l1fRvcCL1ds/FT7O/KWFYEHY0+0uh59G9
kTDMvO7ozYTN+UzOFL8NmvVljpY72kqf5nKHWxy9xT6vs5finkvbbxTyi+QZ
R9ws9hReNrOvbGPxHUOdL7COoWadayN7in8S+fVE6l1RfXOo921HX8JrzjXj
mscj9E+8Pns17ysSNpdvESff/zn6nVjN+CHO+Czn2pawOdIMvUY9T3BHyv8K
d6tZWkPf3mKfFeyr3h509JGjl4g5mrCZfYU8R+n9vLQ7fod9D3OeVZxzDvXP
ps9buMfl7Pc09jnkXU38Yc4Xn7mgw0EhR1+RV33UjH7s6AT8WmTh4b2E4W87
coyT7dg0+6fo086EYeIDerkE3VlH5xI2Gx+T/zi0lh7Op+fq/WJyLIF/P5H6
WkTyIvYVrk7Cn6SOdZzjVXJtJ/cOzvEe9k/wOZMwzLyObj36z9HLvjeRmlnN
qGbz04TNyu6EYWIP6270u+A34ftZwmZDs6DZHMhd6u3U57O+Du/GXbbjbk+z
12vke46+7kQW/2HCsLUvYZj7nH6/QN374Pfht5lzfc554to/Za/T1HqGnmxC
fh2/vcQ95maom6Ount3HQnp8kh6ql5rNA5z7IKvk3xxdSxg2hJvzjr6A34Is
DOgd/8bRHwmbac2z8POno78S9va8SA/2s1/8ru1nr/PkPEfcUfIJF7+T83d0
4r9i33egrejepsYvyaWcb1LzF9hfSjvrd/TjIqtmV316L033r6P/6NUFR98m
bF7/SRhO/obEH+fsf8HLbxtxutOz1BP3Qn04xX1qfl4hfg0x2+jtX+wR5z9K
n/7jLj+h9h2c6QR1S6/vA07iK9slfE9whn+5x2/Y71vOH78d39KLE5xRMV1c
zs6OHvWM1zrZUUNHQxzd5+j7hGFrFyQ8XEnY9yS+Z2c+hSxeuk/phfy+Jy5A
L7v6J0wkPcPKT45+TthbWdiz+dAbdJn9dpPnB0c/4r8X2oNOuAk9w9IV4i7j
uw9f7ad9I89I/BliVZ/ixX+KvI+6dM+au0yezWR+txbwDFea+18c/eroKvx+
ZiSDZ/O7nxyx/QC6jJ5h5jrPSLz8czs+j2e1/8T5pLtKnp/JfR35vyBXXJ/W
zJ5hXvj4DTpInepzc0d3Orqez6fMxGZGVs7z5D1AnOKFX32+6bNtN3cS38Ee
5JD+nqEP6rvqvdEzPGRxa1FHxTzDg3BRBN0Nns1w/B5lIUbzXcKz+Zf/n8TI
T/XqHDc5yu4ZNhSrXIqXn/wLM1/i/yCncFDcM16r9hBOsro1G3JJ9lV+YS8b
PtmQVU9RziKcqd4bOa/ySFfKrQlylfesJ+U861cut97s6DbP5k4YKY0s3kOO
eeVRPs23zpvDUU7P5j4Hd3oDvbmMTrbKbq3k2WfJ78yB+uCRrzT1JThvdva4
xL2qxh+5X9VZBsxoLQtflrsvy/nE5yZO8d+Dz5zUnAtdGXLehk77SV+W/B2p
7y58tHaA/wVs5fMMG3nBSgZ6XYH5SyJnQCf85MM3L7qK6IWNEY5GeoYJ9a6K
Z7j8OZF6syTnJc8tXuotuNUzzAmLGem77L/yBuTHLr9r4FO6TOyVmZiM1FQR
XrU1ddTMszdIdygsNie39lDOVo5ae4axrMxiDUfVPMNEjA3J1R1Vhb+BnDq/
sNLCM/yIrxUkEn0d9XPUEr3sxZzcylFxR+18N0OO2vqW63pyV4WvQu4W5CxK
npbUV5N6i3KGYuiyodeZiqNvA9+aflVhj6Lka8UZq6ed/0ZkxQn7xeh5Jfpe
grxtPcNNbUd1dHb47PjIXhL5pjR7DnTtPcNUO6gU/sLAHZ5hQrOtue5EvPLc
Tu52+Jcml+a9rqN6nuFDlBNdXfg65BNeOrBXPfarh5yLnKXIm4O4nMQoVpgS
doWXiN7XpLb61K6cwou+bqgI39lLfU0hnN3tGT5yEydq4KUwI74hfuXZswG2
PPS5OPeRjf1vol93418WuRw1lGf/btypvmZu5KixZ9jogq4iayX4ysR09ww/
8m9CLaoxH3nyITfG7xYotuvrQ31tOJPZ0oz9zRv6HZ8hmn+9Ky3ghV29NVXY
vwf2Zx09Bz8K/yrYhaeerJLH0aex3JVmvY+jexwN4v4rk185qqXlEB56EyPM
CDuj4bWO8eyt0fvUFL10rdmjBvFj2L81eXuxz2hyjsLeBh/N9EOOHvZsBgc4
GugZjoSH/tx5P+S2nHM8fBvktujaEVOLGOkeRK/6nqLeMdT0vKO+7BHPd19i
+1NPjH/VVZea21P3AGy16XNd/OrB34O/zteBmPbU9CB8O+yP4DOKXrWgf9W9
1Bvdi3P0oU7VLLwIV4OhIegGo7/XM3zoXZgAP9Ez/EzxbOYfQzcJ/SP4q56h
nuFA834H+erDD0rLP4Eck8knbN3vGSb0fURD1kboh5KzcZquC/GK1fcinalp
EvzdnK8hZ2xCnmGOptGXp+iT5u8Jz/CzlL4KJ487mop+l6PdjhY7WuJoODmV
L/6M1foAZ43f0e7k6YE9P3ET6NsjxDQlV3d6/Th8N2TVNZranodfSt1Pco4x
2F7g7p/kjE8iy0fvg96PZ6lpatr5eyKP5Mzaay8593D+7x39gN96Rxs8w46w
tczRi/Bj6fN0z+ZvGfoX8Ze8HHs/L4UlyTMcPe0ZJmZ7hpPZyGM431hi+rBP
P+KExRWe4Ue4eQl+BfsuRz+LvMLlw/i8BK91paOZ5JtB3ApiBxI/G7+XuccB
+CtunqNnPJvBVzybUc3mRO5+lWd4mOsZ/uYgD8I2gbwTkVd7Nieau2b4ziFe
31Pr+319La7PGc1XfuInUNsg+vc0NAfdauqbRL33UfMaapZtMvwaeK1r8VXM
fPq2kr3mcaa51L+a/EPQy66vzy7yPdBM+qn+LfAM38opPCzi3AuRheFXPcPE
Oki83pHH4V/FdyHxj6PTvGqONc/CzmuONnqGj6HsuwBaiG4x+yuPZl7zHr8V
wtAu7uQBfF/DvoG8T6CT/272/cDRTs/ekcepayr2PfhoxoWVsfR5PvWp3hjT
msn9jg44et3RG57hR7wwsYk8Ou9e4jZ5KVxOw3efow/Z7wXkF7njdfR2MvJj
5NmYln8vMaplGbne9OxeN3uGn83IM6hzM3Xr339W4L/FszmYhe+b5IrflTeI
n87ZDxC7HB/t3zFyn0WOHonsZ5D6Nw79nFX/9qF/s9DPWN/2DANveTaz+reo
Q/AvIR/2DHfC0Gx8FXME/WFiDuMzB/vb0FZ0K/F7Gd1c9MKNcPCuZ/hQ3qPw
q5Dl+w5+c4l/h5h58KuJe4X1GLx8trHPcc8wewxag898fLZ7Nq+nPJvVjx2d
4O7X4n8cf/kKHzs8w4Rw8h667cS9mhb7Mfx7xMj/E3xOkEP69z3DgWwnqeck
NS3CLnx9wPo++Y+zx3pyKv6yoyueYWx9Wj59buVy32ve7BvWhF19ni1Jy72N
c6pvlxzd5HyzOzpNb1TPbnIJqz95Nv8/QnvRb8T/NPQpOq2b4Pfh/xO6zzzD
4yb8PsNH9p8dncH+GfJVz/CxD1n8G/icgT5H94tn+LgK7cdf9s1eCpOSz3qG
LcX8Cr8feTN2YfMc61nudQH3fIA4YXtLmu9vnmFL+vOeYWoLtvPw1/D5Dbv0
X8BrFba+ZJV8iJj/wX+UJv/upXD6P/itaTlEX6H7wzPM/Q4dwV/2d7wU9iR/
7RnWFPMn/BHkd7ALf9+wSta8aD720Jvf6IPi//IMl9vS4v72bLb/go7jo1n/
xzPs7KDfFz3D3gVH3+LzN34XsG3D7z18ZPuXPNvRxbm+I7dwJExcwvcT/GV/
H598vs3FVXSXiPkPf8WdRNZ/BPo+8fLL4eScvmH1JP7/Uf9xznCSOOFuJ7lV
lzCc27eeqrfCcS78PPAqn3qO7nDko/OI+8lLxd5MHvkEvmEvDz650Qlz0v+M
La9vWBHGIt/0P2GTb+ib7RT1e8SoX1eJOYOfYvOm6ZPkvoXe5iOn6gixC3Mx
ViVn8G2uFHOroyyObvTt/iXn923m5PMLfopVnPCX0Tc8CW/XoctA3DUvFXsr
eeSjGPkXwCc/OaTP5BvmZCvoKLOj633Dj3xkF/4ys0oWTuRzA7HX0uIL+YZL
6QvCF/YNc4Wwi5dee8S5Vd856hVOhbdj7PM1vt+Ak23Yi/iGOdlVi+xZWCUL
K+ptVt98i+J/I7YLUBxXzLdZLoqvePkLg7IV943/G1k/ExUOSrg1m2+YzIqf
dP9S5x/04FvsF8lZHB/hTLpsxP0HHvWZdgm7bJK/I2dhzpSgjlLwii1JnD4P
48/Yy+A4BzrZ6jiqC7ZvBn+5yVMKLEhXH72HvjR8afB6G2tp8gjf9cBjbBce
yvqGmwa+4a8+lIf8ZfALiCnjp7BUhvi8+DeA19rQUTlyl0Vu5Bse8yLnw6e8
bzi8nlmv4htWGjtqQtwt+Ms3A/7CimazIjrZKhCruPzwt5CrIv4VsDfFR/pK
5GvmG26aUofqqYw9k5/CZyX0jcnfiJgC5CxIrubwBdLkO33DXEHkQuSszH5J
+qbe3OtoMPlVT1X6pByFidXMtXDUEr4wsnxv8FPvguRq8Fqz4K84YetGdNWh
LPjJ3gof6Wvg29o3zLWCiuEje1Y/hXPJNX3DlmLawBdDzopdeLqdtSZ++veN
Evi3gb8pzVdUC10G7vY64kriL3t2fEqhb4eutm/4y45fbXxkb+8bHnOgzwkv
XWnsdzka6Oge33BbCn1pSHbhpgOr5F1Jw9ikpGEotos6+qYb5BuO5CsSXx97
WT+FPcmdfMOTYu6Fb4BcFrtmSTOh2dDs3I0ujlWcZmyho+GOFvg2d43Rd6a3
5YntDD8En8HYpe8Cr1XY6soquQkx98E3TpPv9w1DTZDFV0rLIeqGTr/k04yY
++GbYo/xWhm5u284U8ww+GbIlbELWz1Yu+P3AL1qjiy+apqvqCc6rdX8FMYk
96KXLcj1ALzytMQ2wlFv33DVC3mkb3hqif9wcvbCryV+8qmBrjfUB90o37A1
EmqNv+w1/RQmJff1DVuKGQ3fGrkmduGsH2tf/Mb4hrM2yOL1dd5pvh7UfGjG
NC9jfcOUYtojj0NuR2x/33AmHApLwtlAdLINIFZxd8G3I9dA/OUzw9FM3zB5
F/7jHc129Iajzb7N/cPU9qBv2JNPR3jpHnE0wbeZvgt7bHsI34fI1RH/u8k7
JWmYeCxp9ofQ16bGOpwz7mtnYh9B7o9dOJjjaC78EGTV1cVP4U3yRHitXfFX
nPDRDd0kqCt+ss/DR/pH8X3GN3zMg4biI3t3P4UryZN9w4di5sMPRe6OXVh5
jHUyfnpjHsB/PnzPNN85nPfxpMlTsCtuOP47na1u6L62cTTVyU/4NtPihYfH
fcOK/PW29UIXY6U3voscLfYNKyOQxU/jvnQfS32bteccreCulpNzCnmX+IYb
5XoWX834U9zrk77h50nkEdS1CJ9p7DWa+DHI/bAvJv9IztqXcwwgdrpvs6YZ
fdG3mde8P+3b/D7v6AV0nzk642iTo9d9w8wAcsSfaVqFp52cX+cZR57x+L7m
aCPrdOqYQex0/JcSM44eSl7mGyYeotZl8KrtTWp+GP1y+OX0/Ql371vUx6Sd
cZZv2B7P+eLzP4jcl349SW+X0N/R9HMJZxtLzzXXwsPL0Cp0wsxKbOJfQp6V
NJzMdOt27nQbsZPwmUDtmp01vs2L5kYY1KxvhcS/Te6JxL3iGwZW+4af1ciT
qU3yu+y5AP815J+Cr3Tv+IbL2UmLm8y55hO/gLoUu9bRFUe7HF2md+t9m0P1
7n1HHzha5+hV+vs+vdzh6D3WxeRUvhijU4lbwTl1xkXEyP+co2TgvqZz9JSr
9S0nT0tazFRyyX87MYvo+XZq+4D71LoTfgO1r+dMS7FJr9mdBj2FbgdnWcz5
nvRTM/QqeZ7FJ+7Fd44uYfvY0QnW9cQIb4E7UxjYnGtmhUNhY7dvsyo8Cj8b
kaXf49vsf0jPZuKziV6d921m9mOX32lHn/qG7ec5r849ndyK30deYexz3zAl
7J2Fl+4t+LPwZ9lzOfEfUqdqFOb2su7hvJ+T82vf5u8r385+Bv1Hjg75No9a
V8MLMwccHfQNF184ejppeulexi5ZM6R/a9DPQfXzTv18UP8esQKdbPq3kTH8
m4b+bWNZwv6bdP0+xxfscR7a6qcwuIK+HvENQ4cdzXF1fOnWuUnDjc72DbUf
xu9dzvs153mZs+6n7pfo5zn2+gifg+Q5RK755HmXe4p7rP0u+IZ5YeBb32ZW
cyacHPcNJ8eQjyKvwfci/p84OukbBo7je4yZ0bxo/i7D7yTHUXye4b27AG2n
HuUUhjT/61klCyPCynfstwFf6S+R/xL77aSejznTd8RehN6nftUef/6oL/vo
k+ZLONP8/YjtB9/wINwIH5rR79GfRn+KM+u8V+C/x/cIZ1cPPZfbDwxj73If
27C9gu9G8m2CP5mW/wp59c4JU1Fgdf7EGfZRs3Qfov+Z9UPsEbGfc9bbHJUJ
7Ox6V/TW7OF8e/GJ6MkM/k1P/y2VZkyfC5ozzeNZP/X+XhcYJqTPAK/ZF2Yy
Bjavv/o2v1cd/eLbfMsmH8VL3o/9ID6/kkd+mQLTHST2N/LJRxi45uh/+MtX
b8ghfH7D53/0/BryIXwz4399YFiU/Bt+h7g32W7AVz5fUbfqP4/P1/j9zj7a
7w/fcHAUH+W4gCwf+QprWQOb2d+JOYouG/pj6P+E16rZ/4tV8sdpOtHf6P71
DUP/oIs/c1RLFuqRz3/Mn/YUlrTvTfDSnSD+H/w+Ie4EOsnC5nfE6fwF6EeO
wOY5e2D7nCJHhcDuV72UTn8M4zT2/5C/Jz4ns3uXow7or2DT/MqeKzDcnU6L
zYldOJTe4/M1AA+y5QJbZQOb64i9ysKHyBEzL59yjm4mTvHCnfib0edGpzXG
5c/IeYhPskcpR6V5LzQPNwZ2/xnwKx9Y73RevX15HZ8PTMhWgR5mwPc6MKPe
VsTvKnGZ0FVizUi88v2ahj3Jt6C7BUzcyio5P3d8DRxVAh/X/JSv9tO+ebBX
xudW4uVbJTDcVCaf9AXAm2xVsV1P7M/ku8oMX49fQWZNsfqaVt93/f/PXQLr
ZxZ8CgWGperoq7FXVXyyopdduJJ/YfTS1Qhs3vXfW/+L/U/w+QcYLohOccJi
EVbJf/spnagouuLkK8Ze2ke4uz0wPNWEbkJfAzkb9ShPMfLFWNd/K16b2anK
WXXGO5hBzaKw9JCjhwPDTMnAMFICWTisExjOakM5yJkTvg6+JYjPia5uYJ9F
urP4fd+P/B/vh85dnFjpSrG/8pShvrKsHeF9fEpxBuGtHvZy+HSCl659YPhq
R22qKxcxd5BDe+k90Puiz2l9v7CAWZNPfUe9mIGegeHs7sCwkwe75r0Bq2Th
pKGjRvh2xr8htnxQHNclMEx2hiriXwlb1yCFW8ndA5v9bo4aB4arRvhJV5l7
l18P9myEXyX85JMfXWPiqqBvEhie8mNrAt+AM+SjD+XodwF8mqLvxLmFEWGi
GVQQnx70UnNZg/72puYe6IWZ5o7uJLY5+XpyF9XQFUZfA30vdIoTzvoEhqWa
7NEHvgZyTepvSn0tiFN8UfgWUEt0WmPMFUPW72D0Za8+nKUKd/BQ5ObLUfvI
sHk7vnOcPMjR045aO7lNYHjQ73j0DwxztZDFa36FrwH4CT+t0Us3kLUO8cpX
MkjhU3JbbHXIWRKdMDUoMGzc4+jBwPAzHv29geFhvqNtjhYEhqtSxJeGl06Y
FZ7i92WFo5fgHwkMmx2QO5K3HvtMCGx+5DeF/j0W2Dx1wq5a6gcpfEoe7OjR
wPAxCX/5ToTX2hl/+TbgnLPZdyJxnVm7wA8JDDuae+FmcmBY6cp+k+G7ID9C
nR2JU/x98FqFp/tZJTdJ04mGopvMubuxdod/mnpVd1P8hzka42gsd9yD3j0O
3x15amD4EIaGBzbjwtADgWFsGDFT8WmKrhk+w/F/gjxTkWP7nfiMcDTS0ajA
sNEb/yfwkb0F9lb4tEQ3En/5Pgk9FRimRuKj+GmBYegp/J/Epwdn6ImtL/pW
7Dc6MDz1JUcrdK3pX9sghRPJ4xxNdzQjMNz0Q+5Pz1sTPzMw7M2ABuAzENss
7uweeOFhv6MDgWGsHXv1o67p3K3uoAn1jMMvxvlM+FnkFZ6EOeFtmaPlQQrH
7dinDTWPoYaVgc2satsS2HxpnxfxfzkwHK2EJuAvzA3CXzQHndbB8BPxV45V
jlYHhq3B+M3FJ7brvMLAAvSr8H8lMGwpfjLyGuRH8XkmMDwJb/OQh+D/KDGT
iXsM3/lp+92PLPtafNYFhpu10BT0mjXN5wZI/HpHr7IKF8LNwsBwsYh1Ifzi
wHDyODFTkWPfBqH72sBRHkcN4aV7nJpeJXYK8npqUB5hY0lgWHmWdQk1q9bX
oI2B4WMxMcPxfy4wnIzAFse+hv+otNz30Wf1bVNgc7sRmoa/8o0m7nVHbwSG
D+mWBjaHz7NKnk4u+W4ObMYVMzbNV/QCOs2w5n0/sa+Tfzo1bCJ+JnrFjSNW
GNGMa9Znsd+b8DORZ6ETPh7EX3HC7U+OfibfC+TZ5+jDwLC3hTjFvxUYTqTb
HtjM6XP0Yc4gTL3j6F16ejAwXKwk9u3AMPMR+oPEHcBnFXrZ5+K/Fb10h+j5
c/T5bfzmQE+zz1zi5lHPPOQjgWHoMDmVbzW1xr6H8VnNOeZjX4P+CHGH8ZmP
3zZ8ZD/KmQ5yLsnHAsPfGmTxvzr6JTBsLKCn65KJxPHAMKEY4eTjwPChWRa2
3g8Mh+852oHPcfyOEbsWv0X4yHaCPAvRxbk+ILfwcTKw2ZfvBvxlX4LPqcDm
cSO+p+A/wf8EeTage41Vvju5u43ujK8lDX8bklb/Os5wmvyn8F9KzOvYPoXf
hPxZYDMufOwJbH41x7sDw9guYj7DZym65/HZg/8Z8nxGDun3OvrB0Y+B4eFs
YLP/OT6yLyPnTvLq3oVj4epNcp6BP0PsPuIUL+zd7O4/d2h4W4b9TXy132VH
V9hjC3W8RezVwOZM93nB0bfU8DP6t/E9FxgGvghszr9klawZ/IhcV+EPEnOe
HIfw+xX+ozT5t8DwIAx85ejrwGb8mqP/sZf0wsk3gc25fPQZrq//W2GL6zpE
XuV8mu8v7oks5xHyfsV+77L/Efy3UvMX3Gt8z+exvU1NvweGFa3H4d+jtm+g
C+guBoYT9fYP/H+n599iu4As/4/x+xP+eJr8V2AY+RhZvLAhjPwNfYLfUWo9
xl28xd2rnu8Cw+UH7H+RmE/I+brD1SW3vuHWf9z6b2CYOske/9C/rzlzWTd/
GRwlQ8OXMCO8/BcYzhT/VtJ6uSVp86h534mv/PSHgzWzvluD0PSnsXmhzf9n
+EkWvzVpWHs7aXFn8P0UP/ko5xny6vxhaP0QNoWV7/EJsGv2haer8MKiMLYX
333kOEvMh+iULyJ3CCbvcFQfPg85z3Mf8tX95A9tHjRzSfqoN134yEOceMVq
rvOFNrPy/YJ80t2CXj6Kz4dd+YSL61gla/5jnShjmMJeptDmV/mEFeWUXbav
qFt7a99b8bkFu/wycS7ZdLbM5MuEXIDzyucafv9y16fAgvwVVzC02VeM7rME
d18AvfJcHxqOLjDXmuUsodGNoemEFeUqFBr/B/K3xN+ArXBoOJBPIfgioc28
bNlCe0+zurWoo2LULqxor6z43BTajP+h/RwdpZZL1FiYnH+BpSLkE180LWdW
9vsH3BXhXDqjaj6JTX37Fp1sxUPDjerb5rCR3a3bk9bD4vRRs1vKUWl4HzlB
rPxKoveIKQn/nsuVw607khbjYwvIF89/feZX86K5KYP+ZrBRjL3+5b51F7pH
xd3raLCj28gX570tLVdZcsu/AXuVwX4bd6D+6U72Onre0R5Hzzna5Wi3o6mO
1jvaEBo2yoWGifKskoUlfR/SCD5vmtw4tPmXf4XQMNAktLlujH8jfDKm5W4W
2gwWwO9WfDKRp6KjSqH1RXx+8jaFvxW5AjEZsTUjZ3PyN8O/KfrryVkJqhym
MCC+iqOaoc2M5rgQue50VDW0+auC3CK0WS7EXs3JUwW/QvjJp2Vo89sCKoL+
RnyrQtXQac0apnAluXpo+FCuVvBFkLNi113XYK2OX+vQZq0ocjHOFvvW4MzS
tQlt9ltDxfHPxD1kpk830Lcxoc3VC/RMeW53lDM0jNRy1NZRu9AwUgK5JP63
41fbUS7i2oeGq3ZQKfyFhyGhzXotYnLC5yBXLvR1QsOMct3l6B5Hg0L7bwJz
YX8/aT6yCy8dWO9ir7mO5jnqGBquOpCzFHmFO+H43rT4GJdliNPcPRDaHJag
vzp/F/qp+RU+7nN0v6NOoWGuLKvku7E35PzyGxoabsphF6Y6s97NXsXZrxGx
9xHfkB42Ildj6ohzVKS+ro6GhYazoVAT/JtiewC+SZo8nPN2Jk+MZ+UT5rqx
dqVHnTjvB/x3m/rvNyun+SrnIkeLQ8PTCEcj2ac5e3UPDXeKE1aEpZ7oZOtB
rOJawDcnV0/8e2AfhU8VdHGuXuTuExpmeuPbEn/Zq4cprPbCZzQ+8m2FPAaf
3uRqhU9sGxsa/lohi6+Jbx+oL7px3LNi2iKPh2+DLN/bwxQ+JfeD1xrjVHHC
XG10/aFa+Mn+ID5jyd8anwHEyd4en7vgH8JeJ0zhU/JAfGR/GL10ddG1J989
6GJ/+Qpv9dDL/rSjOaHh/BHs8hOG33H0bmi4Fl5jbD8TGiYGIw8hTvGazQms
kjul6RQX42liaJjrhG0i/Hx8nsEu/aTQMCfbAvj7kO/GLtw8yjoJv4Wh4e9+
ZPFd0nxFk9EJK8OIWQg/FHvXMIVtyY+FhjFhRNh5AP9F+MR26YW/4fhKNwXq
hp/sS/CR/nF8tfYIUziUrK87ng0Nf0ugEcSOxPYc/AjkHsQJi0+wTsVvaWj4
Goksvlear+hJdPq8Gk3MUvhR2HuHKdxKfor9m1NbVve99LduvTGy919zo7d0
DHmUe1lomHsxNJwJq9Og6ehewC4MjSdmOfZ+YQqfkmeENsfCw0vEjSNWM6/Z
n00NL6DvR1x/YhS7wtFMR7NCw95ydA9SwzjqWIG/9APxn00NyrWSPP3ZYxZ+
yqmZ0iyuwV++wo7meLWjV0LDmfAnTL6MXX7C59eOvgkNwzGm52ETjlaFhrGX
0W1D/xG1HSTfy/i97WhraO/CRHSroNXohKftjt4j33xyrqbu2Gc+fpM4x6Po
FbcQ23xyrMH+CvYd+Iyn7w/Sr/70ciA91pk1e5o7zY2wIiy9GhrG1iELa+87
+gB+EfJidEuImUKMdDvR63sAzalm/zVHG0Ob9bXsEb8La4lVnvVhCrf6XkF4
Es6Ey13Yp+LzGvYN5H0Cnfx3s+8uYndCz1LbbupbynkW0buD3O8K6n2K3Orl
fkcHHL3u6I3QMCNeeNsUGiZ03r3EbQpTWJyG7z5HH4aGrReQX+Qe19KTHdSz
kDwb0/LvJUa1LCPXm9zt5tBwshl5BnVupu6DnEv+W0LD0yx83yTXMup5g/jp
nP0Ascvx0f76Pi7++lH5ZpPvjKPPySHdW6Hh621WycKhsHQI/iXkleiEq8Os
koXVG9xbmCUyjMX5vnT0VWjY0/wLG3o3hVnhXjg/EhoOD8Pr5wSryXkhNBy9
i7wtbe9V5NqO33vIF5G34698r4Spd0fyMfhj3O1xVsmaYc36J46+C23+duDz
MXNwCf137HsRnw/Qy74O/xPopbsc2qwJ009hX0fOtWm1XCT3Duwn0mo6SY3f
h4afK+RX7p3Iu+A/IU7xu4n5Ad8r+CjfhjD1/b/kU/RrFXeym5zf4yO7sHya
VfKPoc3/HvSfhoaNn9D/SJ4f8NmHXvZN+H+GXrqfQ8PG2dDm/1P8NkLx/puI
E37PsEr+JTQcXCWn8glDb6T5XsVH+s/ZT/YD6H8h7io+m/E7i4/sv0K/hYbh
c9QrH+FL2BOmhI1qjqo7Oo9OtmuhYes36CPybCHPOXy/CA1Th4j5H/xHyD/Q
4z34nyfmHLzyfUmOL4hVDmFJ2BIWheHMjq6PDLe/Y4/9fmce/mCVfDRNtzVM
4V7n1ddHF8ifBf4A/dIZ9XPBY+TQz0GP8LPWS873O0c3ue8Bs2mNDA/CRTZ4
YUdY+Rv6B12uyOY0p1vzRXZHuj/9D/s0pyeZjzCyGTiFzYssj3L+xV56T/S1
3jF0x4kXrv6DFCtdjsj2FK4uI1+hrhPUpnPoHfiOc/+Ztpf20dmy4yNfzZ6w
kCeyvbTvv6HppcsL6ZxXmYGbI5sD4UX48COjIDKd4pQzt1tLkrdEZPXW4Qxa
68IXddTKUTFHbSLzLR7ZPrnZSz1U/+L9TiNHjpKRYeYW7iIf58pLzbLpHuSr
e1GdIfV+xjl+4F61p/jvkXNzlh+JP8O93u6opqO+kfX+X3qne8nOWc+Djesi
o4zoCkSGp/yRkfjfmPVCkc25sK1zZQDPNZj12txfLT4Lq6PXvN8aWR7tpX0V
eyt7SC/fXo56E3sD70UVR1XBpPZXHQUjw6RqFS88q/5M7PUL/T7LPuewy09n
LMYdxrP5Dz36ByzF9linGS3CLGSjt7fDZ0WWT1Ew9Cv763z623FlHZVhFs5y
57qLS9xHTjB7hX3+Ahs1yV8Dyko/c9Dn2tRYgjkWXzxKzXNtZjkb9d7EWgte
e+g+C0dGRdAV4xxF8c2eFquZ6ueoNZhohdwf34aOGkU255rXeo7ugM+FLGyU
jgwreYmRf9PI7jQ/vdJMl+NeKzmq7KgZPvK9jRylyVkKvi575SS/MN8gMmyU
TcsbIQfkuY06VW9u1vrwpdhD711J5ATnycWelag1I/s24GwFqbt5ZPOcmbPs
cbTX0fPQUnSaG81P48jmt0JkuPnc0RuOziif+2wo6KiAo8KOCjm601FPR1Ud
9YDEV3FUkRzK1YT+5WevxugqcoaM1FyAujNRb2b8mxCrHpbnrhpRcz50GaLU
G1GefRvj04g9rmNP3UuZKIWT+P27DVm83ge9DcKB5lTz2gJqiU6zKcz0iWwe
Nf+1uCfhQ/cmbOgdbxvZ33TUHvrvkoWTAY4Gsk8f9tKbc2fafoWRW5OnOHG1
2VMY6ce+shXDtyh1tmItSs3a60lHT3FGvXm92L8mNZSmRtWqmdTM6b9puNfR
4Mhm9A5k8ZpNnbUd1B7dIGLv4Qw6m2ayh6OeUeqd1T1rTjW/echZH15YKEhc
IXIpp+ZfXzPpa5/M9HMg+oH4iR9C3sFQA3KX4XwdoI7o7kg7a2nOEt9XbXpf
gvssib00522HTrb/8bmhzw/x1/j80GeC5lt1D41sRu+HxGtWO0c2v+Uhzf3d
UGd06oewMjwyrHRz1B2+O/2c4WhmZHNyH3sof0Nk8cJAJ/boRrww2RW5ElQR
3QPs25S9m6FrQv1DqbMceStQcxd8ZB/maFpk+OmDfhg5p6OXfXSUml/NreZU
s6tZGhkZPkaxjoRkGxHZfG90tMnREmpdzJl0jsccTXa0Fl6fc/r6U18zV6V/
mtOpjp6IbF57oFd/x0aGszGR4W86/W5F3WPgx+DXj3NN5zxx7c2p905qnkZP
eiP3wW80cRXoZXwfFZGHcQ/q4YORzeJ4R7Mj+2+ShAfhYha6cZHNafw2jSdG
cz83MqzIfwAxbTiHzq2/SzshMsy0Jdd4/OQ/ExLfn5zC1Bz4OewhXOn3NB5G
nse+yt8B/V2sHahnNmdpT70PQg+heyYyzM+jL49yz48iaxYXRDaHwsN8ZPH3
Icf8EPJNimymJ0Y20xORx3L2NtzjcO5S8zQlslnTvc+gD53o20TqUd5X2OsZ
9p6AX0fqncw9D6PmhfBaF8Ev4u61LoZ/jLjJnPlu9pvE3p3JMZTzz+O86r8+
5/V53zxpNW3HR7WuIV64EB4e58zPRoa/GCeyb3D0WmT4EQ70NccL3PVWR+/Q
G2HiDe72rcjmdQy+6nF39unBXkvYbwQ9l/w6eaaxj+KFmaXIo9ljOr7Clt6S
+I341NFn3Fv3KPWeTmHv5zjfs9T4NnUq7yj2WRHZLC6HfymyudwSGTbehMQL
H8siw02Mn2XE6n1uwH2UZRY6oZdO86LPvC/5LNHXCH/w/dKL5BlHbzez1zh6
+SJ1PRylsCd5JXcyh7O9Df80tS3nbLOpfwu5xnJPmznbTHy20KeHiFtBzzdx
RyPpady7UcirIsNHjBPJqyObw22RzaJW4eVdSLzmd11kc683XVjQfO9w9L6j
DyLDxsOcNX7DtL4MrUL3DnnnkSfO8R45F6BbiE4YW8O+a6LUeyO8TKL+ueSd
x1me4RwTsctvNz3Y5eiUo9NRCj8xnjSjgcNlmLS5fNXR+sjmciex4pcgyy6/
KZzxEc4/l/vdyp28zr1oZt7gPtUv4esB+rcE3XbOvYCev0r+RfRpMTk/I+9z
nG0pemEuxtsZfPZg3039u4ibwp2u4xzr03oxFXkntalG/SxLP8fK7qga35/0
gno7qp60edX3Qfscfehof2SYOR/Z3J6DxL+Jr2Kepy/6vugs/BvIin+RfC+Q
+0V8zpLnC0dfRoYtYU6YOBgZTs5j/4o7kZ9qvdFRlqT5fEHscmo+QOwW4vdj
W0beFfgsZ11BLeeo50Nq3If/R9T1DnV87ehCZHP6DSRe2DgS2dwKMyuJPUTs
VuJXotPcHSZmFfzL2DRL30Y2T8KOMHMMOo7uI3KpNv2cUti7SI+20pP4XbgA
f4G8q9n3KPJF9jrGXkfxOYp8kfzyWUsNHzv6iT7FcyP558jmXTVdgt+BfDmy
udRMfhLZnAonJyKb5Y+JuYzPWnTr8PkE/yvkuUwO6U868vTfHyftjfghMtx8
j4/swkc1vh8XBoQzzaqwtoucV+CvEHuKOMXrfSnjqGzS3qAN2Hfhu5v64npX
pd3z+5xN5/oxMmyrxs/Ie4Y+7sG+j15qHq+ySk4mDVtR0kj8GWJ+IsdZ/DIk
jf88Tb4uabOu2f/F0a+RYSij02dK2l7S76euiNqOR6m3fH9aXcqfgZzKIcxp
D+U8j+4X9tuPTfpznF1vnt5uYUTYepf1G/gD1Cgs/uboWmSz/zt9/Z+jG3gP
viH2BviP0uKuTxr+MieNxAsrh8hxmNyHiBMu9M5kTRp/AVmY+DMyrGjedP+J
pN1/rqTd6WnmwuOtUqzqU81/RIa9I+wp3VH0f7IexZ6F2PhcX3GO0o5uY9a/
Rqcz/0VdyiP+b+5Nb7/wly1p8jHs+jzIkTQcyffjKIVtyf8Qo9iL6KXTbP/L
KvmTNJ36kDNpvRB/BVkkPgf9VF8vsmaDV/x/5NN6Ej4HsZfRJej7Jc4Q6//D
doi71L3q53JxXzXflbn//PzcTn7Cc0dHnRyVTxpWykFJMJAnafgTxm7mnnPx
NUfAu/ADNmExNzE/wf+ITVipAA6FC2EoX9LoFnQVk4ab68Ck6v2SOT4IHjJQ
W3lylievatS+eZErkicf2M6LT15k1RfXe4098nOuspy9EvVUpJ6M6PQzzeup
T738X1rfJRfEvxJ9V923JlN7/IZclTxV8KtCzj/Ah36uKiqMrga4qk5O9U15
vuCOv0Qn2y/UUxD83cBeVcGM1mrwWrOwVocvRFxB+lGOnmhuVUfNpL37unu9
3aOc3NJRC/zLMFt3JO3+67FKVs9LOirhqK2jexzVdTSQvH0c9cXWDt/e7Kv6
6pNDuXKl5c6Dvj41dKLuuxx1SNrbId3d6IWZUsnU56fW0pCHTX8XSH/Hbb7j
5yXtb1Dp73GNTNqZdd7JSftbzY+6dQDnqONoYtL+LvyEpNnko7//rL+hqb+x
N9XpijtqQy9qE6/YCcTq78NPT9rfotPfoJyRtL9Nqb+Fp72LMB/FHBV11Cpp
f1tKf29mAXJr7P0d1XLUL2kYEXY60+cS1LEwaX+HR+cuwvl0r8JNw6ThqRGr
5OzUrbfqP96y+Cx10GvNCV+C+/yPN6wWvnXxqUPOm7DpnVWP4rz/IvflHLdz
xqLUWYS1KHU2ThomdN4uScOychaj9wnq0V3/ybtZhJpq0bNixPzNuy0M1mCO
yjNLneGly8VZdCbNYoNk6m1qQN8qENMFXV58JHelzlzkqEeNCfpWk3Nn45z6
TFPNqq0m+tvpYTbOcRO6P/GNPye1FiWPzvk3+fviX5seDGCOiuOnd0E/E9I7
IVwJM8LZvUnD5SDqHoTcxNEwR00dPcA6jBjFtucO2iMr9p60PHWR73c0lHtt
QH8HQ/XZX7n1M6sC7H0vtmZp+7djv/ju27H3UGpVfuFhrKNxjsYnDSfih3N2
5dM7oH/7GsFaCFvzNJ3mcXTS5lT8KOQW2EfiP5yYB+CVfwxxo6lnXDL1Lral
rtb4jOEMDzp6iLU9vmOJb43fWPjx+MlHeKrFvTehF8PoubB0X9I+p/S51i1p
v9+k31l5N2m/i6XfAdHvg3zA75ltot/5ydc9af8uqM+5W9Hlp9eN2Ee/46jf
dXyH3qhHwuRAZkDvQ3Fq13n0maXv5/W5oM8N4VKfFZuT9rtX+h1P4T9+t95M
2u9+qvbG1HEL5+pGjd04Y1f6p15qToXbIfThYXQPoZNN8zgYOcb5fexbgLM2
Zc/GnL8DeZRPv9uuv1uxlr1VQ0V8ZH/E0Zqk/Z0O/c59Tc6rc7+atN/fVY7K
nEN9Xp+033/Xnfwfb+hT9A==
"]], PolygonBox[CompressedData["
1:eJwlkkdOQ0EQBUf+aJYgYQRrthwBhEk34AgsQBjJPgKInINtkjE55+xAsAUi
nANYgS9BPfWipPrTM92/e6a+K94ZCznnGqAC5r1zXyx8wwJ+A7+Bc39wi59C
HI/BCX4IfXgH7OObUIfXwoa3NcXaYQ/fhR68BbbxA4jiCTjCL2ENT8MFfg2Z
wNau8GNIBlZTtXegO7Ccyq0cyqU92vsE1TQWhmd8DlL0loRZfB2a2BtWDbzo
bW8NlPBH+CT2AQ94WvnwRsjgZzqDl+Dc25piyqncBW9n3yGP57z5G2TxO2+z
LcM9vqLvkNVQrVUoh2xNsRlv/56AaXwJKtlbBcvq3dvd/ahHbzPX7DVjzXoR
SsSKkPLWs3pXDdUagDa8FfrxUcjiORjDtyAS2Mw1+xHdP7EoDOOTkMcLMOXt
jnXXehN6G3oTehvKoVxD3s72wiA+7q2WckzgL9DMXUTgFf8HLqNh8Q==
"]]}]}, {}, {}, {}, {}},
VertexColors->CompressedData["
1:eJzt2z1oFEEchvHFj4CFnTYaTLSwSRCxESQ4goVpFBU7QUWMlRKUaCEWsbAS
QVTESrTxo1ERQUklfhBb0TTxAkkI5s5ootgogrg5bLc4nLl5/zPPchDuqcLN
/GZvd2/WHx3cP7CkKIrXHUWxtPzbuLa9fH11t1ZfXnb+x4y7u+mZe7t3zOXW
H21cLJ/dlgNnb47Upt3wlTtPXn2g09vbfc3nDc1j3vX+enP1cO+se9ex7eTt
9+Ny7nBNz6HjGtf09Hpo17l5Vxtfep4d17imp9djuU7Vu9r4+upD4zvurRya
cfWnF/asrU+6I82Bq0Xrap+PWsc1rpX94j0N19a9q41vqn7xnoZrK97VxlfN
l1pXGy9c4xrXuA49n2O5xjuucR1u3h58vLx8LbiR2p/unQMNNzx4aHdfz2Rl
z817qq5Pd46e6hydcH09a1b8/DThuo/d/7L5zFTLHddpuMZ7e7zHcn3pxOzv
B99fuq6Lc/uerxtz/VPnVj3chWtVv1X9+mJuLLj+F1vLf23O3fjYVY7YtDfv
sdYBvKdxvlZzqua3qhfN45s73jzm/72vV3pnHUjDtZWO3zRcqznFr6Yv6+5a
9eirh3at5tfK/TE1R7m5a/V6Nlb35R3XaXQ1L6F71bwKfV0Zq4deH0KvA9a/
h+OuPb+7ULvPE6urrSdW1oFUu9r8pKfR1dYHOp3ziM55JPT6oPa8QK1bvz9j
vad6XRl6Hqo9j7DS8ch9XeX9br7uM4ReH0J3NS+4s/W8NVXXvry32tUcpeou
t98jqX0P9+U3lms1d1Y8qrnDdXuey6g9B7TiWs1vLNdq+3GsuGYdiHudq+ZU
7bxsZf8s3jXXAfzacs3+Wbzj2q5rKz0312reqzqucW3RNd7ZB4drXOMa13jX
92vFdSzvuMa7Rb/WXYf2jus8vat9PrjGNZ2eqmtf3nFNT6mrecQ1nY5rX95x
TU+pq7nDNZ2Oa1899H5tOp1Op9P/p/8FEC9Bzw==
"]],
GraphicsComplexBox[CompressedData["
1:eJxdl3lwTXcUxyNS0eAtSV5eIi+S9zBMTVWGKJG6h6gljK0ztpryEH8YpK0l
lopWgo4hpho1bcfUdJnSBNVqar+HINNqQscyNNYgdrJZSqJ973e+v/vHy1xz
33Pv+53ld37fzzneaTljs8PDwsLqAv+Cd/nrRBsv5RRdyvFx63mnj7y7sCOV
zqkKXF522K45bP6O1Kcgs09BmZc3dBoWuDpS5brCLtu3evno37XO8JM+GqYe
eLnQOaIx9xcfXf1j1uLpEV7urB74qH7J2Jr4qym8/0rXwOWjKmUghdXjCPx+
UArXzvjtQOoKL54n877i2Jj54730PH/dkIbIZM4SO/RDnHd5RWEHri5pKuhT
nEINMcFPSdy7Q0Xy7IwUUm5u8LDEl0It1N3Dl2Vdqt+97/TdkYlsVnc7VF3c
gdbufLZm56L2nFdROKmgKYlU+KUJvPXs5nG5k5Lo/sjiftsfxnMXWZeSs58m
Zj9189Eebct6tPVQwip//Cq/mzMXt7uZVpSI/MVx282HozYfbk/tS04llJxy
8fuyLj0qz7tfnhfLvwffW5pA6t4vli80Dw5cCfSf+ovhbfnpW/PT48l+d4vt
7pZo3qnWdVN/lYdobsw+kL4swU1D1Xcn4nUjXifvFT/oUdI7LZeWO/jc5Iqz
kytcdHvWjppZO2w8f3TkgtGRLvKpuNrKfnwfS0UqgW1YaiSWRqn1X2XDW/nn
qE9jqG+34KdIHjcvbfy8tBjarey04mPjPwpc0XQomNduEdz5eb+Jr+dEU7OK
pyWvV+tGU6VKUEvOrFy2sMUuJw1W67fgYBbjVzlJ3fxhPFziogepaT/njmg2
0/NdgctJ/pWVU1dWNpldVp/4eJTNSR2U403mS2XHQXfV/YV5MWhnu4Pmqrw/
M78yzi/qtdxBu5S/T8xg9AtGO2iM+tBozg7+d28H9VZ2G8yGyMT1NXYHZarv
dabk14H81ppTlaN22t6QcbIh45aZzUGP7FSs1q8xr6g47fSl8u+GKefETiPV
/YJ5/PmpCcnt7fSNev+c+V6da0qdK/D+gKQzgcv8tT5Y2DbqFfXBuLyBJeah
LW/cbvPcRuLH+Qz9fHcb9dyYgt//Jb839PonZX0jC/aXiH1D+/eF+GfMhP9l
4r/hR3wnJD6jBeKPkviNRuRH6qPOmIv8ST02GK2R30mSX+Nr5P+g5N/Q+5Mr
+2NIXE6SfXxhdMX+vib7a+h6eCj1YExHvXikXmgQ6mmE1BNtQL1dlHqjLqjH
lspOBJWjXo9IvdIE1PM+qWci1PtbUu8Uch5oOM7LJjkv1O3gy+oZDhd1lfNE
ojcumlOd9bRVUTs6j/N3X84ffdtntKerLY70PujzWq4KyQF7btyd9ATnXeeh
FHog+Y6mn6AXDtELqoKeaL/3Qm/2it5QiB5RO+iVR/SK3oaeab+OQe8SRe8o
RA9pG/TygeglfQI91XYYelsoeksheoxzlYL98dCb0HNt5zr0/rHoPYXwgPaD
F03CC6oDT7SdLPAmS3hDB8AjqY8UCuEVaZ5dE57RMfBO2w3hITnBy77CS4oC