-
Notifications
You must be signed in to change notification settings - Fork 1
/
Caption_it.py
121 lines (66 loc) · 2.24 KB
/
Caption_it.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import keras
import json
import pickle
from keras.applications.vgg16 import VGG16
from keras.applications.resnet50 import ResNet50, preprocess_input, decode_predictions
from keras.preprocessing import image
from keras.models import Model, load_model
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
from keras.layers import Input, Dense, Dropout, Embedding, LSTM
from keras.layers.merge import add
# In[2]:
model = load_model('model_weights/model_19.h5')
model._make_predict_function()
# In[3]:
model_temp = ResNet50(weights="imagenet", input_shape=(224,224,3))
# In[4]:
model_resnet = Model(model_temp.input, model_temp.layers[-2].output)
model_resnet._make_predict_function()
# In[5]:
def preprocess_img(img):
img = image.load_img(img, target_size=(224,224))
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = preprocess_input(img)
return img
# In[6]:
def encode_image(img):
img = preprocess_img(img)
feature_vector = model_resnet.predict(img)
feature_vector = feature_vector.reshape(1, feature_vector.shape[1])
return feature_vector
# In[7]:
with open('./storage/word_to_idx.pkl', 'rb') as w2i:
word_to_idx = pickle.load(w2i)
with open('./storage/idx_to_word.pkl', 'rb') as i2w:
idx_to_word = pickle.load(i2w)
# In[11]:
def predict_caption(photo):
in_text = "<s>"
max_len = 35
for i in range(max_len):
sequence = [word_to_idx[w] for w in in_text.split() if w in word_to_idx]
sequence = pad_sequences([sequence], maxlen=max_len, padding='post')
ypred = model.predict([photo, sequence])
ypred = ypred.argmax() #Taking the word with max probability - Greedy sampling
word = idx_to_word[ypred]
in_text += (' ' + word)
if word == "<e>":
break
final_caption = in_text.split()[1:-1]
final_caption = ' '.join(final_caption)
return final_caption
def caption_this_image(image):
enc = encode_image(image)
caption = predict_caption(enc)
return caption
# In[12]:
# In[13]:
# In[ ]: