-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfashion_mnist.py
43 lines (34 loc) · 1.27 KB
/
fashion_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
from keras.datasets import fashion_mnist
(train_images, train_label), (test_images, test_label) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Scandal', 'Skirt', 'Sneaker', 'Bag', 'Ankle boot']
plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.show()
plt.figure(figsize = (10, 10))
for i in range(25):
plt.subplot(5, 5, i+1)
plt.xticks([])
plt.yticks([])
plt.imshow(train_images[i] , cmap = matplotlib.cm.binary)
plt.xlabel(class_names[train_label[i]])
plt.show()
model = keras.Sequential()
model.add(keras.layers.Flatten(input_shape = (28, 28)))
model.add(keras.layers.Dense(256, activation = "relu"))
model.add(keras.layers.Dense(132, activation = "relu"))
model.add(keras.layers.Dense(10, activation = "softmax"))
model.compile(optimizer = "adam", loss = "sparse_categorical_crossentropy", metrics = ["accuracy"])
history = model.fit(train_images, train_label, epochs = 10)
c = model.evaluate(test_images, test_label)
pd.DataFrame(history.history).plot()
plt.grid(True)
plt.gca().set_ylim(0, 1)
plt.show()