-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpopulate_database.py
121 lines (90 loc) · 3.47 KB
/
populate_database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import argparse
import os
import shutil
from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.schema.document import Document
from .get_embedding_function import get_embedding_function
from langchain_chroma import Chroma
CHROMA_PATH = rf"chroma"
DATA_PATH = rf"data"
def main(FileName):
DATA_PATH = rf"data/{FileName}"
# Check if the database should be cleared (using the --clear flag).
# parser = argparse.ArgumentParser()
# parser.add_argument("--reset", action="store_true", help="Reset the database.")
# args = parser.parse_args()
# if args.reset:
# print("✨ Clearing Database")
# clear_database()
# Create (or update) the data store.
documents = load_documents(DATA_PATH)
chunks = split_documents(documents)
re = add_to_chroma(chunks)
return re
def load_documents(DATA_PATH):
document_loader = PyPDFLoader(DATA_PATH)
return document_loader.load()
def split_documents(documents: list[Document]):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=80,
length_function=len,
is_separator_regex=False,
)
return text_splitter.split_documents(documents)
def add_to_chroma(chunks: list[Document]):
# Load the existing database.
db = Chroma(
persist_directory=CHROMA_PATH, embedding_function=get_embedding_function(),
)
# Calculate Page IDs.
chunks_with_ids = calculate_chunk_ids(chunks)
# Add or Update the documents.
existing_items = db.get(include=[]) # IDs are always included by default
existing_ids = set(existing_items["ids"])
# Only add documents that don't exist in the DB.
new_chunks = []
for chunk in chunks_with_ids:
if chunk.metadata["id"] not in existing_ids:
new_chunks.append(chunk)
if len(new_chunks):
print(f"👉 Adding new documents: {len(new_chunks)}")
new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks]
db.add_documents(new_chunks, ids=new_chunk_ids )
# db.persist()
return {"Success" : "embeddings created!"}
else:
print("✅ No new documents to add")
return {"Error" : "No new documents to add!"}
def calculate_chunk_ids(chunks):
# This will create IDs like "data/monopoly.pdf:6:2"
# Page Source : Page Number : Chunk Index
last_page_id = None
current_chunk_index = 0
for chunk in chunks:
source = chunk.metadata.get("source")
page = chunk.metadata.get("page")
current_page_id = f"{source}:{page}"
metaData={
"srcName":source.split('\\')[-1],
"pageNo": str(page),
"chuksNo":""
}
# If the page ID is the same as the last one, increment the index.
if current_page_id == last_page_id:
current_chunk_index += 1
else:
current_chunk_index = 0
# Calculate the chunk ID.
metaData['chuksNo'] = str(current_chunk_index)
last_page_id = current_page_id
# Add it to the page meta-data.
chunk.metadata["id"] = f"{metaData['srcName']}:{metaData['pageNo']}:{metaData['chuksNo']}"
chunk.metadata["category"] = source.split('\\')[-1]
return chunks
def clear_database():
if os.path.exists(CHROMA_PATH):
shutil.rmtree(CHROMA_PATH)
if __name__ == "__main__":
main(rf"rag/data/ticket_to_ride.pdf")