-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathimport_utils.py
73 lines (55 loc) · 2.33 KB
/
import_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import importlib.metadata as importlib_metadata
from functools import lru_cache
import packaging.version
def is_bnb_available() -> bool:
return importlib.util.find_spec("bitsandbytes") is not None
def is_bnb_4bit_available() -> bool:
if not is_bnb_available():
return False
import bitsandbytes as bnb
return hasattr(bnb.nn, "Linear4bit")
def is_auto_gptq_available():
if importlib.util.find_spec("auto_gptq") is not None:
AUTOGPTQ_MINIMUM_VERSION = packaging.version.parse("0.5.0")
version_autogptq = packaging.version.parse(importlib_metadata.version("auto_gptq"))
if AUTOGPTQ_MINIMUM_VERSION <= version_autogptq:
return True
else:
raise ImportError(
f"Found an incompatible version of auto-gptq. Found version {version_autogptq}, "
f"but only versions above {AUTOGPTQ_MINIMUM_VERSION} are supported"
)
def is_optimum_available() -> bool:
return importlib.util.find_spec("optimum") is not None
@lru_cache
def is_torch_tpu_available(check_device=True):
"Checks if `torch_xla` is installed and potentially if a TPU is in the environment"
if importlib.util.find_spec("torch_xla") is not None:
if check_device:
# We need to check if `xla_device` can be found, will raise a RuntimeError if not
try:
import torch_xla.core.xla_model as xm
_ = xm.xla_device()
return True
except RuntimeError:
return False
return True
return False
def is_aqlm_available():
return importlib.util.find_spec("aqlm") is not None
def is_auto_awq_available():
return importlib.util.find_spec("awq") is not None