Skip to content

Latest commit

 

History

History
44 lines (35 loc) · 2.06 KB

NEWS.md

File metadata and controls

44 lines (35 loc) · 2.06 KB

multiarm 0.13

  • Support added for computing median and modal sample sizes.
  • 'Code for reproduction' box added to the GUI.

multiarm 0.12

  • Support added for clinical trials with Poisson distributed outcomes (build_dtl_pois(), build_gs_pois(), build_ss_pois(), des_dtl_pois(), des_gs_pois(), des_ss_pois(), opchar_dtl_pois(), opchar_gs_pois(), opchar_ss_pois(), plot.multiarm_des_dtl_pois(), plot.multiarm_des_gs_pois(), plot.multiarm_des_ss_pois(), sim_dtl_pois(), sim_gs_pois(), sim_ss_pois()).

multiarm 0.11

  • Analysis functions removed; focus purely on design for now.
  • Support added for group-sequential multi-arm multi-stage clinical trials with normally or Bernoulli distributed outcomes (build_gs_bern(), build_gs_norm(), des_gs_bern(), des_gs_norm(), opchar_gs_bern(), opchar_gs_norm(), plot.multiarm_des_gs_bern(), plot.multiarm_des_gs_norm(), sim_gs_bern(), sim_gs_norm()).
  • Corresponding support also added for multi-stage drop-the-losers designs (build_dtl_bern(), build_dtl_norm(), des_dtl_bern(), des_dtl_norm(), opchar_dtl_bern(), opchar_dtl_norm(), plot.multiarm_des_dtl_bern(), plot.multiarm_des_dtl_norm(), sim_dtl_bern(), sim_dtl_norm()).
  • Suffix of _norm added to all relevant functions given below to indicate outcome variable.
  • _ma_ replaced in function names with _ss_.
  • des_int_ma() removed for simplicity; does not add much over des_ss_norm().

multiarm 0.10

  • Corresponding support added for trials with Bernoulli outcomes (an_ma_bern(), build_ma_bern(), des_ma_bern(), opchar_ma(), plot.multiarm_des_ma_bern(), sim_ma_bern()).
  • gui_ma() renamed gui() to reflect use for multiple types of outcome.

multiarm 0.9

  • Package launched with support for the design (build_ma(), des_ma(), des_int_ma()), assessment (opchar_ma()), analysis (an_ma()), simulation (sim_ma()), and visualisation (plot.multiarm_des_ma()) of single-stage multi-arm clinical trials with normally distributed outcomes. An R Shiny graphical user interface is also provided (gui_ma()).