-
Notifications
You must be signed in to change notification settings - Fork 0
/
etl.py
121 lines (95 loc) · 4.3 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import glob
import psycopg2
import pandas as pd
from sql_queries import *
import json
def process_song_file(cur, filepath):
'''processes all song json files and inserts the data afterwards in postgre sql tables
INPUT:
cur: A postgres / psycopg2 cursor object for fulfilling the insert tasks
filepath: A string indicating the directories for finding the relevant json files
'''
# open song file
df = pd.read_json(filepath, typ = "series")
# insert song record
song_data = list(df.loc[["song_id", "title", "artist_id", "year",
"duration"]].values)
cur.execute(song_table_insert, song_data)
# insert artist record
artist_data = list(df.loc[["artist_id", "artist_name", "artist_location",
"artist_latitude", "artist_longtitude"]].values)
cur.execute(artist_table_insert, artist_data)
def process_log_file(cur, filepath):
'''processes all log json files and inserts the data afterwards in postgre sql tables
INPUT:
cur: A postgres / psycopg2 cursor object for fulfilling the insert tasks
filepath: A string indicating the directories for finding the relevant json files
'''
# open log file
df = pd.read_json(filepath, lines=True)
# filter by NextSong action
df = df[df.page == "NextSong"]
# convert timestamp column to datetime
t = pd.to_datetime(df.ts, unit="ms")
# insert time data records
time_data = zip(t.dt.to_pydatetime(), t.dt.hour, t.dt.day,
t.dt.weekofyear, t.dt.month, t.dt.year, t.dt.dayofweek)
column_labels = ("start_time", "hour", "day",
"week", "month", "year", "weekday")
time_df = pd.DataFrame(data=list(time_data), columns=column_labels)
for i, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
# load user table
user_df = user_df = df.loc[:, ["userId", "firstName", "lastName", "gender", "level"]]
user_df.drop_duplicates(inplace=True)
# insert user records
for i, row in user_df.iterrows():
cur.execute(user_table_insert, row)
# insert songplay records
for index, row in df.iterrows():
#get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record
songplay_data = row.loc[["ts", "userId", "level", "song", "artist",
"sessionId", "location", "userAgent"]]
songplay_data.ts = pd.to_datetime(songplay_data.ts, unit="ms")
songplay_data.song = songid
songplay_data.artist = artistid
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
'''processes all relevant json files and inserts the data afterwards in sparkifydb postgre sql tables
INPUT:
cur: A postgres / psycopg2 cursor object for fulfilling the insert tasks
filepath: A string indicating the directories for finding the relevant json files
func: A function object indicating if song or log data should be loaded
'''
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root,'*.json'))
for f in files :
all_files.append(os.path.abspath(f))
all_files = [x for x in all_files if x.find("ipynb") == -1]
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
def main():
'''main function for managing the whole etl sparkifydb process'''
conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student")
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()