forked from Ben-Ramchandani/PlannerCore
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPB_helper.lua
343 lines (308 loc) · 12 KB
/
PB_helper.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
PB_helper = {}
function PB_helper.can_place_pole(state, position)
position = PB_helper.abs_position(state, position)
-- Assume pole is square
local left = position.x + state.conf.prototype.collision_box.left_top.x
local right = position.x + state.conf.prototype.collision_box.right_bottom.x
local top = position.y + state.conf.prototype.collision_box.left_top.y
local bottom = position.y + state.conf.prototype.collision_box.right_bottom.y
for i = math.floor(left), math.ceil(right - 1) do
for j = math.floor(top), math.ceil(bottom - 1) do
local tile_prototype = state.surface.get_tile(i, j).prototype
if tile_prototype.collision_mask and tile_prototype.collision_mask["water-tile"] then
return false
end
end
end
local entities = state.surface.find_entities_filtered({area = {{left, top}, {right, bottom}}})
for i, entity in ipairs(entities) do
local prototype = entity.prototype
if entity.name == "entity-ghost" and entity.ghost_type ~= "tile" then
prototype = entity.ghost_prototype
end
if
not entity.to_be_deconstructed(state.force) and prototype.collision_box and prototype.collision_mask and
prototype.collision_mask["object-layer"] and
entity.name ~= "player" and
entity.type ~= "car"
then
return false
end
end
return true
end
function PB_helper.place_blueprint(surface, data)
data.inner_name = data.name
data.name = "entity-ghost"
data.expires = false
surface.create_entity(data)
end
function PB_helper.abs_position(state, position)
return {x = position.x + state.left + state.conf.offset, y = position.y + state.top + state.conf.offset}
end
function PB_helper.rel_position(state, position)
return {x = position.x - state.left - state.conf.offset, y = position.y - state.top - state.conf.offset}
end
function PB_helper.rel_position_true(state, position)
return {x = position.x - state.left, y = position.y - state.top}
end
function PB_helper.print_info(state, info)
if not state.surpress_info then
state.player.print({"pole-builder.info", info})
end
end
function PB_helper.print_warning(state, warning)
if not state.surpress_warnings then
state.player.print({"pole-builder.warn", warning})
end
end
function PB_helper.place_pole_enitity_counts(state, reachable_entities)
for i, wrapper in ipairs(reachable_entities) do
if wrapper.unpowered then
wrapper.unpowered = nil
state.entity_count = state.entity_count - 1
end
end
end
function PB_helper.place_pole_collision_adjustment(state, position)
for i = math.max(state.conf.collision_left + position.x, 1), math.min(
state.conf.collision_right + position.x,
state.width
) do
for j = math.max(state.conf.collision_top + position.y, 1), math.min(
state.conf.collision_bottom + position.y,
state.height
) do
state.area[i][j] = false
end
end
end
function PB_helper.opt_reachability(state, rel_position)
local wire_distance = math.floor(state.conf.wire_distance)
local left = math.floor(math.max(rel_position.x - wire_distance, 1))
local top = math.floor(math.max(rel_position.y - wire_distance, 1))
local right = math.ceil(math.min(rel_position.x + wire_distance, state.width))
local bottom = math.ceil(math.min(rel_position.y + wire_distance, state.height))
local found_good_pole = false
for i = left, right do
local column = state.area[i]
if column then
for j = top, bottom do
local pos = column[j]
if
pos and not pos.reachable and
PB_helper.distance(rel_position.x, rel_position.y, i, j) <= wire_distance
then
pos.reachable = true
if PB_helper.count_entities(state, pos.reachable_entities) == 0 then
table.insert(state.reachable_zero_list, pos)
else
table.insert(state.reachable_list, pos)
end
end
end
end
end
end
function PB_helper.opt_place_pole(state, position)
local data = {name = state.conf.pole, position = PB_helper.abs_position(state, position), force = state.force}
PB_helper.place_blueprint(state.surface, data)
PB_helper.place_pole_enitity_counts(state, position.reachable_entities)
state.area[position.x][position.y] = nil
PB_helper.opt_reachability(state, position)
table.insert(state.pole_positions, position)
return true
end
function PB_helper.opt_best_position(state)
local max_count = 0
local max_position = nil
local max_index = nil
local i = 1
while i <= #state.reachable_list do
local pos = state.reachable_list[i]
local count = #pos.reachable_entities
if count > max_count then
count = PB_helper.count_entities(state, pos.reachable_entities)
end
if count > max_count then
max_count = count
max_position = pos
max_index = i
i = i + 1
elseif count == 0 then
table.remove(state.reachable_list, i)
table.insert(state.reachable_zero_list, pos)
else
i = i + 1
end
end
if max_index then
table.remove(state.reachable_list, max_index)
end
return max_position
end
function PB_helper.blocked_best_position(state)
local max_count = 0
local max_position = nil
for x, v in pairs(state.area) do
for y, pos in pairs(v) do
if pos and not pos.reachable then
if #pos.reachable_entities > max_count then
local count = PB_helper.count_entities(state, pos.reachable_entities)
if count > max_count then
max_count = count
max_position = pos
end
end
end
end
end
return max_position
end
function PB_helper.opt_join_networks(state)
state.best_distance_x = state.best_distance_x or math.huge
state.best_distance_y = state.best_distance_y or math.huge
local best_position = nil
local best_index = nil
local best_distance = math.huge
if #state.reachable_zero_list == 1 then
best_position = state.reachable_zero_list[1]
best_index = 1
else
for i, pos in ipairs(state.reachable_zero_list) do
if
math.abs(state.aim_for_position.x - pos.x) <= state.best_distance_x or
math.abs(state.aim_for_position.y - pos.y) <= state.best_distance_y
then
local distance = PB_helper.distance_position(state.aim_for_position, pos)
if distance < best_distance then
best_distance = distance
best_position = pos
best_index = i
end
end
end
end
if best_position then
PB_helper.opt_place_pole(state, best_position)
state.best_distance = best_distance
table.remove(state.reachable_zero_list, best_index)
return true
else
return false
end
end
function PB_helper.reachability_any_pole(state, rel_position, wire_distance)
wire_distance = math.floor(wire_distance)
local left = math.floor(math.max(rel_position.x - wire_distance, 1))
local top = math.floor(math.max(rel_position.y - wire_distance, 1))
local right = math.ceil(math.min(rel_position.x + wire_distance, state.width))
local bottom = math.ceil(math.min(rel_position.y + wire_distance, state.height))
for i = left, right do
for j = top, bottom do
if state.area[i][j] and PB_helper.distance(rel_position.x, rel_position.y, i, j) <= wire_distance then
state.area[i][j].reachable = true
end
end
end
end
function PB_helper.place_pole_reachability(state, position)
PB_helper.reachability_any_pole(state, position, state.conf.wire_distance)
end
function PB_helper.place_pole(state, position)
local data = {name = state.conf.pole, position = PB_helper.abs_position(state, position), force = state.force}
PB_helper.place_blueprint(state.surface, data)
PB_helper.place_pole_enitity_counts(state, state.area[position.x][position.y].reachable_entities)
PB_helper.place_pole_collision_adjustment(state, position)
PB_helper.place_pole_reachability(state, position)
table.insert(state.pole_positions, position)
return true
end
function PB_helper.connected(pole_position, pole_radius, entity_bounding_box)
return entity_bounding_box.left_top.x < pole_position.x + pole_radius and
entity_bounding_box.right_bottom.x > pole_position.x - pole_radius and
entity_bounding_box.left_top.y < pole_position.y + pole_radius and
entity_bounding_box.right_bottom.y > pole_position.y - pole_radius
end
function PB_helper.count_entities(state, reachable_entities)
local i = 1
local count = 0
while i <= #reachable_entities do
if reachable_entities[i].unpowered then
count = count + 1
i = i + 1
else
table.remove(reachable_entities, i)
end
end
return count
end
function PB_helper.distance(x1, y1, x2, y2)
return math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2))
end
function PB_helper.distance_position(pos1, pos2)
return PB_helper.distance(pos1.x, pos1.y, pos2.x, pos2.y)
end
function PB_helper.find_best_position(state, ignore_reachable)
local max_count = 0
local max_position = nil
for x, v in ipairs(state.area) do
for y, pos in ipairs(v) do
if pos and (pos.reachable or ignore_reachable) then
if #pos.reachable_entities > max_count then
local count = PB_helper.count_entities(state, pos.reachable_entities)
if count > max_count then
max_count = count
max_position = {x = x, y = y}
end
end
end
end
end
return max_position
end
function PB_helper.find_closest_position(state, position)
local best_dist = math.huge
local best_position = nil
for x, v in ipairs(state.area) do
for y, cell in ipairs(v) do
if cell and cell.reachable then
local cell_pos = {x = x, y = y}
local dist = PB_helper.distance_position(cell_pos, position)
if dist < best_dist then
best_position = cell_pos
best_dist = dist
end
end
end
end
return best_position
end
function PB_helper.find_smallest_distance(from_list, to)
local closest_distance = math.huge
for i, pos in ipairs(from_list) do
local dist = PB_helper.distance_position(to, pos)
if dist < closest_distance then
closest_distance = dist
end
end
return closest_distance
end
function PB_helper.join_networks(state)
if not state.best_distance then
state.best_distance = PB_helper.find_smallest_distance(state.pole_positions, state.aim_for_position)
end
local best_position = PB_helper.find_closest_position(state, state.aim_for_position)
if best_position then
local dist = PB_helper.distance_position(best_position, state.aim_for_position)
if dist < state.best_distance then
PB_helper.place_pole(state, best_position)
state.best_distance = dist
return true
else
return false
end
else
return false
end
end