-
Notifications
You must be signed in to change notification settings - Fork 6
/
main_pipeline.py
292 lines (271 loc) · 15.7 KB
/
main_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import las2ply
import numpy as np
from wrappers import Colmap, FFMpeg, PDraw, ETH3D, PCLUtil
from cli_utils import set_full_argparser, print_step, print_workflow, get_matrix
from video_localization import localize_video, generate_GT, generate_GT_individual_pictures
import meshlab_xml_writer as mxw
import prepare_images as pi
import prepare_workspace as pw
def prepare_point_clouds(pointclouds, lidar_path, verbose, eth3d, pcl_util, SOR, pointcloud_resolution, **env):
converted_clouds = []
output_centroid = None
for pc in pointclouds:
ply, centroid = las2ply.load_and_convert(input_file=pc,
output_folder=lidar_path,
verbose=verbose >= 1)
if pc.ext[1:].upper() == "LAS":
if output_centroid is None:
output_centroid = centroid
pcl_util.filter_cloud(input_file=ply, output_file=ply.stripext() + "_filtered.ply", knn=SOR[0], std=SOR[1])
if pointcloud_resolution is not None:
pcl_util.subsample(input_file=ply.stripext() + "_filtered.ply",
output_file=ply.stripext() + "_subsampled.ply",
resolution=pointcloud_resolution)
converted_clouds.append(ply.stripext() + "_subsampled.ply")
else:
converted_clouds.append(ply.stripext() + "_filtered.ply")
temp_mlp = env["workspace"] / "lidar_unaligned.mlp"
mxw.create_project(temp_mlp, converted_clouds, labels=None, transforms=None)
if len(converted_clouds) > 1:
eth3d.align_with_ICP(temp_mlp, env["lidar_mlp"], scales=5)
else:
temp_mlp.move(env["lidar_mlp"])
return converted_clouds, output_centroid
def main():
args = set_full_argparser().parse_args()
env = vars(args)
if args.show_steps:
print_workflow()
return
if args.add_new_videos:
env["resume_work"] = True
args.skip_step = [1, 2, 4, 5, 8]
if args.begin_step is not None:
args.skip_step += list(range(args.begin_step))
pw.check_input_folder(args.input_folder)
args.workspace = args.workspace.abspath()
pw.prepare_workspace(args.workspace, env)
colmap = Colmap(db=env["thorough_db"],
image_path=env["colmap_img_root"],
mask_path=env["mask_path"],
dense_workspace=env["dense_workspace"],
binary=args.colmap,
verbose=args.verbose,
logfile=args.log)
env["colmap"] = colmap
ffmpeg = FFMpeg(args.ffmpeg, verbose=args.verbose, logfile=args.log)
env["ffmpeg"] = ffmpeg
pdraw = PDraw(args.nw, verbose=args.verbose, logfile=args.log)
env["pdraw"] = pdraw
eth3d = ETH3D(args.eth3d, args.raw_output_folder / "Images", args.max_occlusion_depth,
verbose=args.verbose, logfile=args.log, splat_radius=args.eth3d_splat_radius)
env["eth3d"] = eth3d
pcl_util = PCLUtil(args.pcl_util, verbose=args.verbose, logfile=args.log)
env["pcl_util"] = pcl_util
las_files = (args.input_folder/"Lidar").files("*.las")
ply_files = (args.input_folder/"Lidar").files("*.ply")
input_pointclouds = las_files + ply_files
env["videos_list"] = sum((list((args.input_folder/"Videos").walkfiles('*{}'.format(ext))) for ext in args.vid_ext), [])
no_gt_folder = args.input_folder/"Videos"/"no_groundtruth"
if no_gt_folder.isdir():
env["videos_to_localize"] = [v for v in env["videos_list"] if not str(v).startswith(no_gt_folder)]
else:
env["videos_to_localize"] = env["videos_list"]
i = 1
if i not in args.skip_step:
print_step(i, "Point Cloud Preparation")
env["pointclouds"], env["centroid"] = prepare_point_clouds(input_pointclouds, **env)
if env["centroid"] is not None:
np.savetxt(env["centroid_path"], env["centroid"])
else:
if env["centroid_path"].isfile():
env["centroid"] = np.loadtxt(env["centroid_path"])
i += 1
if i not in args.skip_step:
print_step(i, "Pictures preparation")
env["individual_pictures"] = pi.extract_pictures_to_workspace(**env)
else:
full_paths = sum((list(env["individual_pictures_path"].walkfiles('*{}'.format(ext))) for ext in env["pic_ext"]), [])
env["individual_pictures"] = [path.relpath(env["colmap_img_root"]) for path in full_paths]
i += 1
# Get already existing_videos
env["videos_frames_folders"] = {}
by_name = {v.stem: v for v in env["videos_list"]}
for folder in env["video_path"].walkdirs():
video_name = folder.basename()
if video_name in by_name.keys():
env["videos_frames_folders"][by_name[video_name]] = folder
if i not in args.skip_step:
print_step(i, "Extracting Videos and selecting optimal frames for a thorough scan")
new_video_frame_folders = pi.extract_videos_to_workspace(fps=args.lowfps, **env)
# Concatenate both already treated videos and newly detected videos
env["videos_frames_folders"] = {**env["videos_frames_folders"], **new_video_frame_folders}
env["videos_workspaces"] = {}
for v, frames_folder in env["videos_frames_folders"].items():
env["videos_workspaces"][v] = pw.prepare_video_workspace(v, frames_folder, **env)
i += 1
if i not in args.skip_step:
print_step(i, "First thorough photogrammetry")
env["thorough_recon"].makedirs_p()
colmap.extract_features(image_list=env["video_frame_list_thorough"], more=args.more_sift_features)
colmap.index_images(vocab_tree_output=env["indexed_vocab_tree"], vocab_tree_input=args.vocab_tree)
if env["match_method"] == "vocab_tree":
colmap.match(method="vocab_tree", vocab_tree=env["indexed_vocab_tree"], max_num_matches=env["max_num_matches"])
else:
colmap.match(method="exhaustive", max_num_matches=env["max_num_matches"])
colmap.map(output=env["thorough_recon"], multiple_models=env["multiple_models"])
thorough_model = pi.choose_biggest_model(env["thorough_recon"])
colmap.adjust_bundle(thorough_model, thorough_model,
num_iter=100, refine_extra_params=True)
else:
thorough_model = pi.choose_biggest_model(env["thorough_recon"])
i += 1
if i not in args.skip_step:
print_step(i, "Alignment of photogrammetric reconstruction with GPS")
env["georef_recon"].makedirs_p()
env["georef_full_recon"].makedirs_p()
colmap.align_model(output=env["georef_recon"],
input=thorough_model,
ref_images=env["georef_frames_list"])
if not (env["georef_recon"]/"images.bin").isfile():
# GPS alignment failed, possibly because not enough GPS referenced images
# Copy the original model without alignment
print("Warning, model alignment failed, the model will be normalized, and thus the depth maps too")
thorough_model.merge_tree(env["georef_recon"])
env["georef_recon"].merge_tree(env["georef_full_recon"])
if args.inspect_dataset:
print("FIRST DATASET INSPECTION")
print("Inspection of localisalization of frames used in thorough mapping "
"w.r.t Sparse reconstruction")
colmap.export_model(output=env["georef_recon"] / "georef_sparse.ply",
input=env["georef_recon"])
georef_mlp = env["georef_recon"]/"georef_recon.mlp"
mxw.create_project(georef_mlp, [env["georef_recon"] / "georef_sparse.ply"])
colmap.export_model(output=env["georef_recon"],
input=env["georef_recon"],
output_type="TXT")
eth3d.inspect_dataset(scan_meshlab=georef_mlp,
colmap_model=env["georef_recon"],
image_path=env["colmap_img_root"])
i += 1
if i not in args.skip_step:
print_step(i, "Video localization with respect to reconstruction")
for j, v in enumerate(env["videos_to_localize"]):
print("\n\nNow working on video {} [{}/{}]".format(v, j + 1, len(env["videos_to_localize"])))
video_env = env["videos_workspaces"][v]
localize_video(video_name=v,
video_frames_folder=env["videos_frames_folders"][v],
video_index=j+1,
step_index=i,
num_videos=len(env["videos_to_localize"]),
**video_env, **env)
i += 1
if i not in args.skip_step:
print_step(i, "Full reconstruction point cloud densificitation")
colmap.undistort(input=env["georef_full_recon"])
colmap.dense_stereo(min_depth=env["stereo_min_depth"], max_depth=env["stereo_max_depth"])
colmap.stereo_fusion(output=env["georefrecon_ply"])
i += 1
if i not in args.skip_step:
print_step(i, "Alignment of photogrammetric reconstruction with respect to Lidar Point Cloud")
if args.registration_method == "eth3d":
# Note : ETH3D doesn't register with scale, this might not be suitable for very large areas
mxw.add_meshes_to_project(env["lidar_mlp"], env["aligned_mlp"], [env["georefrecon_ply"]], start_index=0)
eth3d.align_with_ICP(env["aligned_mlp"], env["aligned_mlp"], scales=5)
mxw.remove_mesh_from_project(env["aligned_mlp"], env["aligned_mlp"], 0)
matrix = np.linalg.inv(mxw.get_mesh(env["aligned_mlp"], index=0)[0])
np.savetxt(env["matrix_path"], matrix)
''' The new mlp is supposedly better than the one before because it was an ICP
with N+1 models instead of just N so we replace it with the result on this scan
by reversing the first transformation and getting back a mlp file with identity
as first transform matrix'''
mxw.apply_transform_to_project(env["aligned_mlp"], env["lidar_mlp"], matrix)
env["global_registration_matrix"] = matrix
else:
if args.normals_method == "radius":
eth3d.compute_normals(env["with_normals_path"], env["lidar_mlp"], neighbor_radius=args.normals_radius)
else:
eth3d.compute_normals(env["with_normals_path"], env["lidar_mlp"], neighbor_count=args.normals_neighbours)
if args.registration_method == "simple":
pcl_util.register_reconstruction(georef=env["georefrecon_ply"],
lidar=env["with_normals_path"],
output_matrix=env["matrix_path"],
max_distance=10)
elif args.registration_method == "interactive":
input("Get transformation matrix between {0} and {1} so that we should"
" apply it to the reconstructed point cloud to have the lidar point cloud, "
"and paste it in the file {2}. When done, press ENTER".format(env["with_normals_path"],
env["georefrecon_ply"],
env["matrix_path"]))
env["global_registration_matrix"] = get_matrix(env["matrix_path"])
mxw.apply_transform_to_project(env["lidar_mlp"], env["aligned_mlp"], env["global_registration_matrix"])
else:
env["global_registration_matrix"] = get_matrix(env["matrix_path"])
mxw.apply_transform_to_project(env["lidar_mlp"], env["aligned_mlp"], env["global_registration_matrix"])
i += 1
if i not in args.skip_step:
print_step(i, "Occlusion Mesh computing")
'''combine the MLP file into a single ply file. We need the normals for the splats'''
if args.normals_method == "radius":
eth3d.compute_normals(env["with_normals_path"], env["aligned_mlp"], neighbor_radius=args.normals_radius)
else:
eth3d.compute_normals(env["with_normals_path"], env["aligned_mlp"], neighbor_count=args.normals_neighbours)
'''Create vis file that will tell by what images each point can be seen. We transfer this knowledge from georefrecon
to the Lidar model'''
scale = np.linalg.norm(env["global_registration_matrix"][:3, :3], ord=2)
with_normals_subsampled = env["with_normals_path"].stripext() + "_subsampled.ply"
pcl_util.create_vis_file(env["georefrecon_ply"], env["with_normals_path"],
resolution=args.mesh_resolution / scale,
output=with_normals_subsampled)
'''Compute the occlusion mesh by fooling COLMAP into thinking the lidar point cloud was made with colmap'''
colmap.delaunay_mesh(env["occlusion_ply"], input_ply=with_normals_subsampled)
if args.splats:
eth3d.create_splats(env["splats_ply"], with_normals_subsampled,
env["occlusion_ply"], env["splat_threshold"] / scale,
env["max_splat_size"])
if args.inspect_dataset:
# First inspection : Check registration of the Lidar pointcloud wrt to COLMAP model but without the occlusion mesh
# Second inspection : Check the occlusion mesh and the splats
georef_mlp = env["georef_recon"]/"georef_recon.mlp"
mxw.create_project(georef_mlp, [env["georefrecon_ply"]])
colmap.export_model(output=env["georef_full_recon"],
input=env["georef_full_recon"],
output_type="TXT")
print("SECOND DATASET INSPECTION")
print("Inspection of localisalization of frames used in thorough mapping "
"w.r.t Dense reconstruction")
eth3d.inspect_dataset(scan_meshlab=georef_mlp,
colmap_model=env["georef_full_recon"],
image_path=env["colmap_img_root"])
print("Inspection of localisalization of frames used in thorough mapping "
"w.r.t Aligned Lidar Point Cloud")
eth3d.inspect_dataset(scan_meshlab=env["aligned_mlp"],
colmap_model=env["georef_full_recon"],
image_path=env["colmap_img_root"])
print("Inspection of localisalization of frames used in thorough mapping "
"w.r.t Aligned Lidar Point Cloud and Occlusion Meshes")
eth3d.inspect_dataset(scan_meshlab=env["aligned_mlp"],
colmap_model=env["georef_full_recon"],
image_path=env["colmap_img_root"],
occlusions=env["occlusion_ply"],
splats=env["splats_ply"])
i += 1
if i not in args.skip_step:
print_step(i, "Groud Truth generation")
for j, v in enumerate(env["videos_to_localize"]):
video_env = env["videos_workspaces"][v]
generate_GT(video_name=v, GT_already_done=video_env["GT_already_done"],
video_index=j+1,
step_index=i,
num_videos=len(env["videos_to_localize"]),
metadata_path=video_env["metadata_path"],
**video_env["output_env"], **env)
if env["generate_groundtruth_for_individual_images"]:
by_folder = pi.group_pics_by_folder(env["individual_pictures"])
for folder, pic_list in by_folder.items():
generate_GT_individual_pictures(input_colmap_model=env["georef_full_recon"],
individual_pictures_list=pic_list,
relpath=folder,
step_index=i, **env)
if __name__ == '__main__':
main()