-
Notifications
You must be signed in to change notification settings - Fork 6
/
main_pipeline_no_lidar.py
196 lines (181 loc) · 9.72 KB
/
main_pipeline_no_lidar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import numpy as np
from wrappers import Colmap, FFMpeg, PDraw, ETH3D, PCLUtil
from cli_utils import set_full_argparser, print_step, print_workflow
from video_localization import localize_video, generate_GT, generate_GT_individual_pictures
import meshlab_xml_writer as mxw
import prepare_images as pi
import prepare_workspace as pw
def main():
args = set_full_argparser().parse_args()
env = vars(args)
if args.show_steps:
print_workflow()
return
if args.add_new_videos:
env["resume_work"] = True
args.skip_step += [1, 3, 4]
if args.begin_step is not None:
args.skip_step += list(range(args.begin_step))
pw.check_input_folder(args.input_folder, with_lidar=False)
args.workspace = args.workspace.abspath()
pw.prepare_workspace(args.workspace, env, with_lidar=False)
colmap = Colmap(db=env["thorough_db"],
image_path=env["colmap_img_root"],
mask_path=env["mask_path"],
dense_workspace=env["dense_workspace"],
binary=args.colmap,
verbose=args.verbose,
logfile=args.log)
env["colmap"] = colmap
ffmpeg = FFMpeg(args.ffmpeg, verbose=args.verbose, logfile=args.log)
env["ffmpeg"] = ffmpeg
pdraw = PDraw(args.nw, verbose=args.verbose, logfile=args.log)
env["pdraw"] = pdraw
eth3d = ETH3D(args.eth3d, args.raw_output_folder / "Images", args.max_occlusion_depth,
verbose=args.verbose, logfile=args.log, splat_radius=args.eth3d_splat_radius)
env["eth3d"] = eth3d
pcl_util = PCLUtil(args.pcl_util, verbose=args.verbose, logfile=args.log)
env["pcl_util"] = pcl_util
env["videos_list"] = sum((list((args.input_folder/"Videos").walkfiles('*{}'.format(ext))) for ext in args.vid_ext), [])
no_gt_folder = args.input_folder/"Videos"/"no_groundtruth"
if no_gt_folder.isdir():
env["videos_to_localize"] = [v for v in env["videos_list"] if not str(v).startswith(no_gt_folder)]
else:
env["videos_to_localize"] = env["videos_list"]
i = 1
if i not in args.skip_step:
print_step(i, "Pictures preparation")
env["individual_pictures"] = pi.extract_pictures_to_workspace(**env)
else:
full_paths = sum((list(env["individual_pictures_path"].walkfiles('*{}'.format(ext))) for ext in env["pic_ext"]), [])
env["individual_pictures"] = [path.relpath(env["colmap_img_root"]) for path in full_paths]
i += 1
# Get already existing_videos
env["videos_frames_folders"] = {}
by_name = {v.stem: v for v in env["videos_list"]}
for folder in env["video_path"].walkdirs():
video_name = folder.basename()
if video_name in by_name.keys():
env["videos_frames_folders"][by_name[video_name]] = folder
if i not in args.skip_step:
print_step(i, "Extracting Videos and selecting optimal frames for a thorough scan")
new_video_frame_folders = pi.extract_videos_to_workspace(fps=args.lowfps, **env)
# Concatenate both already treated videos and newly detected videos
env["videos_frames_folders"] = {**env["videos_frames_folders"], **new_video_frame_folders}
env["videos_workspaces"] = {}
for v, frames_folder in env["videos_frames_folders"].items():
env["videos_workspaces"][v] = pw.prepare_video_workspace(v, frames_folder, **env)
i += 1
if i not in args.skip_step:
print_step(i, "First thorough photogrammetry")
env["thorough_recon"].makedirs_p()
colmap.extract_features(image_list=env["video_frame_list_thorough"], more=args.more_sift_features)
colmap.index_images(vocab_tree_output=env["indexed_vocab_tree"], vocab_tree_input=args.vocab_tree)
if env["match_method"] == "vocab_tree":
colmap.match(method="vocab_tree", vocab_tree=env["indexed_vocab_tree"], max_num_matches=env["max_num_matches"])
else:
colmap.match(method="exhaustive", max_num_matches=env["max_num_matches"])
colmap.map(output=env["thorough_recon"], multiple_models=env["multiple_models"])
thorough_model = pi.choose_biggest_model(env["thorough_recon"])
colmap.adjust_bundle(thorough_model, thorough_model,
num_iter=100, refine_extra_params=True)
else:
thorough_model = pi.choose_biggest_model(env["thorough_recon"])
i += 1
if i not in args.skip_step:
print_step(i, "Alignment of photogrammetric reconstruction with GPS")
env["georef_recon"].makedirs_p()
env["georef_full_recon"].makedirs_p()
colmap.align_model(output=env["georef_recon"],
input=thorough_model,
ref_images=env["georef_frames_list"])
if not (env["georef_recon"]/"images.bin").isfile():
# GPS alignment failed, possibly because not enough GPS referenced images
# Copy the original model without alignment
print("Warning, model alignment failed, the model will be normalized, and thus the depth maps too")
thorough_model.merge_tree(env["georef_recon"])
env["georef_recon"].merge_tree(env["georef_full_recon"])
if args.inspect_dataset:
print("FIRST DATASET INSPECTION")
print("Inspection of localisalization of frames used in thorough mapping "
"w.r.t Sparse reconstruction")
colmap.export_model(output=env["georef_recon"] / "georef_sparse.ply",
input=env["georef_recon"])
georef_mlp = env["georef_recon"]/"georef_recon.mlp"
mxw.create_project(georef_mlp, [env["georef_recon"] / "georef_sparse.ply"])
colmap.export_model(output=env["georef_recon"],
input=env["georef_recon"],
output_type="TXT")
eth3d.inspect_dataset(scan_meshlab=georef_mlp,
colmap_model=env["georef_recon"],
image_path=env["colmap_img_root"])
i += 1
if i not in args.skip_step:
print_step(i, "Video localization with respect to reconstruction")
for j, v in enumerate(env["videos_to_localize"]):
print("\n\nNow working on video {} [{}/{}]".format(v, j + 1, len(env["videos_to_localize"])))
video_env = env["videos_workspaces"][v]
localize_video(video_name=v,
video_frames_folder=env["videos_frames_folders"][v],
step_index=i, video_index=j+1,
num_videos=len(env["videos_to_localize"]),
**video_env, **env)
i += 1
if i not in args.skip_step:
print_step(i, "Full reconstruction point cloud densificitation")
env["georef_full_recon"].makedirs_p()
colmap.undistort(input=env["georef_full_recon"])
colmap.dense_stereo(min_depth=env["stereo_min_depth"], max_depth=env["stereo_max_depth"])
colmap.stereo_fusion(output=env["georefrecon_ply"])
i += 1
if i not in args.skip_step:
print_step(i, "Reconstruction cleaning")
filtered = env["georefrecon_ply"].stripext() + "_filtered.ply"
pcl_util.filter_cloud(input_file=env["georefrecon_ply"],
output_file=filtered,
knn=args.SOR[0], std=args.SOR[1])
mxw.create_project(env["aligned_mlp"], [filtered])
i += 1
if i not in args.skip_step:
print_step(i, "Occlusion Mesh computing")
colmap.delaunay_mesh(env["occlusion_ply"], input_ply=env["georefrecon_ply"])
if args.splats:
eth3d.create_splats(env["splats_ply"], env["georefrecon_ply"].stripext() + "_filtered.ply",
env["occlusion_ply"], env["splat_threshold"],
env["max_splat_size"])
if args.inspect_dataset:
print("SECOND DATASET INSPECTION")
print("Inspection of localisalization of frames used in thorough mapping "
"w.r.t Dense reconstruction")
eth3d.inspect_dataset(scan_meshlab=env["aligned_mlp"],
colmap_model=env["georef_recon"],
image_path=env["colmap_img_root"])
print("SECOND DATASET INSPECTION")
print("Inspection of localisalization of frames used in thorough mapping "
"w.r.t Dense reconstruction and Occlusion Meshes")
eth3d.inspect_dataset(scan_meshlab=env["aligned_mlp"],
colmap_model=env["georef_recon"],
image_path=env["colmap_img_root"],
occlusions=env["occlusion_ply"],
splats=env["splats_ply"])
i += 1
if i not in args.skip_step:
print_step(i, "Groud Truth generation")
for j, v in enumerate(env["videos_to_localize"]):
video_env = env["videos_workspaces"][v]
generate_GT(video_name=v, GT_already_done=video_env["GT_already_done"],
video_index=j+1,
step_index=i,
num_videos=len(env["videos_to_localize"]),
metadata_path=video_env["metadata_path"],
global_registration_matrix=np.eye(4),
**video_env["output_env"], **env)
if env["generate_groundtruth_for_individual_images"]:
by_folder = pi.group_pics_by_folder(env["individual_pictures"])
for folder, pic_list in by_folder.items():
generate_GT_individual_pictures(input_colmap_model=env["georef_full_recon"],
individual_pictures_list=pic_list,
relpath=folder,
step_index=i, **env)
if __name__ == '__main__':
main()