Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add meta collection utility #106

Open
charleskawczynski opened this issue Dec 15, 2022 · 1 comment
Open

Add meta collection utility #106

charleskawczynski opened this issue Dec 15, 2022 · 1 comment

Comments

@charleskawczynski
Copy link
Member

We should add a meta collection utility, for improving algorithm transparency, tests and optimization monitoring. Here's a scratch pad of what I had locally:

using Revise;
import ClimaTimeSteppers as CTS
import OrdinaryDiffEq as ODE
import LinearAlgebra as LA

struct SchurComplementW{T}; p::T; end
Base.similar(w::SchurComplementW) = w

# T_imp!(Yₜ, Y, p, t) = collect_meta(p, t, T_imp!)
# T_exp!(Yₜ, Y, p, t) = collect_meta(p, t, T_exp!)
# Wfact!(Yₜ, Y, p, Δt, t) = collect_meta(p, t, Wfact!)
# implicit_tendency!(Yₜ, Y, p, t) = collect_meta(p, t, implicit_tendency!)
# explicit_tendency!(Yₜ, Y, p, t) = collect_meta(p, t, explicit_tendency!)
# dss!(Y, p, t) = collect_meta(p, t, dss!)
# lim!(U, p, t, u) = collect_meta(p, t, lim!)
# T_lim!(Yₜ, Y, p, t) = collect_meta(p, t, T_lim!)
# stage_callback!(Y, p, t) = collect_meta(p, t, stage_callback!)
# tgrad!(Yₜ, Y, p, t) = collect_meta(p, t, tgrad!)
# LA.ldiv!(x, W::SchurComplementW, b) = collect_meta(p, nothing, LA.ldiv!)

Wfact!(Yₜ, Y, p, Δt, t) = collect_meta(p, t, :Wfact!)
implicit_tendency!(Yₜ, Y, p, t) = collect_meta(p, t, :implicit_tendency!)
explicit_tendency!(Yₜ, Y, p, t) = collect_meta(p, t, :explicit_tendency!)
dss!(Y, p, t) = nothing
lim!(U, p, t, u) = nothing
T_lim!(Yₜ, Y, p, t) = nothing
stage_callback!(Y, p, t) = nothing
tgrad!(Yₜ, Y, p, t) = collect_meta(p, t, :tgrad!)
LA.ldiv!(x, W::SchurComplementW, b) = collect_meta(p, nothing, :ldiv!)

struct AlgoMeta{D, T}
    call_counter_dict::D
    func_call_order::T
    function AlgoMeta()
        func_call_order = []
        call_counter_dict = Dict{Symbol,Vector{Int}}()
        D = typeof(call_counter_dict)
        T = typeof(func_call_order)
        return new{D, T}(call_counter_dict, func_call_order)
    end
end

function collect_meta(p, t, f)
    (; meta) = p
    fun = Symbol(f)
    push!(meta.func_call_order, (fun, t))
    if haskey(meta.call_counter_dict, fun)
        meta.call_counter_dict[fun][1] += 1
    else
        meta.call_counter_dict[fun] = Int[0]
    end
end
FT = Float64
Y₀ = zeros(FT, 1)
p = (; meta = AlgoMeta())
jac_prototype=SchurComplementW(p)
func_args = (; jac_prototype, Wfact = Wfact!, tgrad = tgrad!)
split_tendency_func = CTS.ClimaODEFunction(;
    T_exp! = explicit_tendency!,
    T_imp! = ODE.ODEFunction(implicit_tendency!; func_args...),
    dss! = dss!,
    lim!,
    T_lim!,
    stage_callback!,
)
prob = ODE.ODEProblem(split_tendency_func, Y₀, (FT(0), FT(1)), p)
alg = CTS.ARS343(CTS.NewtonsMethod(; max_iters=3))
integrator = ODE.init(prob, alg; dt=FT(0.1), save_everystep = true)
CTS.step_u!(integrator);

function summarize(meta::AlgoMeta)
    println("------------- Function call order")
    for (func, t) in meta.func_call_order
        println("     $func called at time $t")
    end
    println("------------- N-total calls")
    for k in keys(meta.call_counter_dict)
        meta.call_counter_dict[k] == [0] && continue
        println("     $(meta.call_counter_dict[k]): $k")
    end
    println("-------------")
    return nothing
end

summarize(p.meta)

using Revise;
import ClimaTimeSteppers as CTS
import OrdinaryDiffEq as ODE
import LinearAlgebra as LA

struct SchurComplementW{T}; p::T; end
Base.similar(w::SchurComplementW) = w

Wfact!(Yₜ, Y, p, Δt, t) = collect_meta(p, t, :Wfact!)
implicit_tendency!(Yₜ, Y, p, t) = collect_meta(p, t, :implicit_tendency!)
explicit_tendency!(Yₜ, Y, p, t) = collect_meta(p, t, :explicit_tendency!)
dss!(Y, p, t) = nothing
lim!(U, p, t, u) = nothing
T_lim!(Yₜ, Y, p, t) = nothing
stage_callback!(Y, p, t) = nothing
tgrad!(Yₜ, Y, p, t) = collect_meta(p, t, :tgrad!)
LA.ldiv!(x, W::SchurComplementW, b) = collect_meta(p, nothing, :ldiv!)


struct AlgoMeta{D, T}
    call_counter_dict::D
    func_call_order::T
    function AlgoMeta()
        func_call_order = []
        call_counter_dict = Dict{Symbol,Vector{Int}}()
        D = typeof(call_counter_dict)
        T = typeof(func_call_order)
        return new{D, T}(call_counter_dict, func_call_order)
    end
end

function collect_meta(p, t, f)
    (; meta) = p
    fun = Symbol(f)
    push!(meta.func_call_order, (fun, t))
    if haskey(meta.call_counter_dict, fun)
        meta.call_counter_dict[fun][1] += 1
    else
        meta.call_counter_dict[fun] = Int[0]
    end
end
FT = Float64;
Y₀ = zeros(FT, 1);
p = (; meta = AlgoMeta());
jac_prototype=SchurComplementW(p);
tspan = (FT(0), FT(1));

jac_kwargs = (; jac_prototype, Wfact = Wfact!);
remaining_func = explicit_tendency!;
prob = ODE.SplitODEProblem(
    ODE.ODEFunction(
        implicit_tendency!;
        jac_kwargs...,
        tgrad = tgrad!,
    ),
    remaining_func,
    Y₀,
    tspan,
    p,
);

alg = CTS.ARS343(CTS.NewtonsMethod(; max_iters=3));
integrator = ODE.init(prob, alg; dt=FT(0.1), save_everystep = true);
CTS.step_u!(integrator);

function summarize(meta::AlgoMeta)
    println("------------- Function call order")
    for (func, t) in meta.func_call_order
        println("     $func called at time $t")
    end
    println("------------- N-total calls")
    for k in keys(meta.call_counter_dict)
        meta.call_counter_dict[k] == [0] && continue
        println("     $(meta.call_counter_dict[k]): $k")
    end
    println("-------------")
    return nothing
end

summarize(p.meta)
@charleskawczynski
Copy link
Member Author

More local notes:

using Revise;
import ClimaTimeSteppers as CTS
import OrdinaryDiffEq as ODE
import LinearAlgebra as LA

struct SchurComplementW{T}; p::T; end
Base.similar(w::SchurComplementW) = w
T_imp!(Yₜ, Y, p, t) = collect_meta(p, t, T_imp!)
T_exp!(Yₜ, Y, p, t) = collect_meta(p, t, T_exp!)
Wfact!(Yₜ, Y, p, Δt, t) = collect_meta(p, t, Wfact!)
implicit_tendency!(Yₜ, Y, p, t) = collect_meta(p, t, implicit_tendency!)
explicit_tendency!(Yₜ, Y, p, t) = collect_meta(p, t, explicit_tendency!)
tgrad!(Yₜ, Y, p, t) = collect_meta(p, t, tgrad!)
LA.ldiv!(x, W::SchurComplementW, b) = collect_meta(p, nothing, LA.ldiv!)

function collect_meta(p, t, f)
    (; algo_mapper) = p
    push!(algo_mapper[string(f)], t)
    algo_mapper["ctr"][1] += 1
end
Y₀ = zeros(Float64, 1)
FT = Float64
algo_mapper = Dict(
    "ctr" => [0],
    "T_imp!" => [],
    "T_exp!" => [],
    "Wfact!" => [],
    "implicit_tendency!" => [],
    "explicit_tendency!" => [],
    "tgrad!" => [],
    "ldiv!" => [],
)
p = (; algo_mapper)
jac_prototype=SchurComplementW(p)
func_args = (; jac_prototype, Wfact = Wfact!, tgrad = tgrad!)
split_tendency_func = CTS.ClimaODEFunction(;
    T_exp! = explicit_tendency!,
    T_imp! = ODE.ODEFunction(implicit_tendency!; func_args...),
)
prob = ODE.ODEProblem(split_tendency_func, Y₀, (FT(0), FT(1)), p)
alg = CTS.NewARS343(CTS.NewtonsMethod(; max_iters=1))
integrator = ODE.init(prob, alg; dt=FT(0.1), save_everystep = true)
CTS.step_u!(integrator)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant