forked from flightaware/dump1090
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sdr_hackrf.c
295 lines (244 loc) · 8.53 KB
/
sdr_hackrf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
// Part of dump1090, a Mode S message decoder for RTLSDR devices.
//
// sdr_hackrf.h: HackRF One support (header)
//
// Copyright (c) 2019 FlightAware LLC
//
// This file is free software: you may copy, redistribute and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation, either version 2 of the License, or (at your
// option) any later version.
//
// This file is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "dump1090.h"
#include "sdr_hackrf.h"
#include <libhackrf/hackrf.h>
#include <inttypes.h>
static struct {
hackrf_device *device;
uint64_t freq;
int enable_amp;
int lna_gain;
int vga_gain;
int rate;
int ppm;
iq_convert_fn converter;
struct converter_state *converter_state;
} HackRF;
void hackRFInitConfig()
{
HackRF.device = NULL;
HackRF.freq = 1090000000;
HackRF.enable_amp = 0;
HackRF.lna_gain = 32;
HackRF.vga_gain = 50;
HackRF.rate = 2400000;
HackRF.ppm = 0;
HackRF.converter = NULL;
HackRF.converter_state = NULL;
}
bool hackRFHandleOption(int argc, char **argv, int *jptr)
{
int j = *jptr;
bool more = (j+1 < argc);
if (!strcmp(argv[j], "--lna-gain") && more) {
HackRF.lna_gain = atoi(argv[++j]);
if (HackRF.lna_gain % 8 != 0) {
fprintf(stderr, "Error: --lna-gain must be multiple of 8\n");
return false;
}
if (HackRF.lna_gain > 40 || HackRF.lna_gain < 0) {
fprintf(stderr, "Error: --lna-gain range is 0 - 42\n");
return false;
}
} else if (!strcmp(argv[j], "--vga-gain") && more) {
HackRF.vga_gain = atoi(argv[++j]);
if (HackRF.vga_gain % 2 != 0) {
fprintf(stderr, "Error: --vga-gain must be multiple of 2\n");
return false;
}
if (HackRF.vga_gain > 62 || HackRF.vga_gain < 0) {
fprintf(stderr, "Error: --vga-gain range is 0 - 62\n");
return false;
}
} else if (!strcmp(argv[j], "--ppm") && more) {
HackRF.ppm = atoi(argv[++j]);
} else if (!strcmp(argv[j], "--samplerate") && more) {
HackRF.rate = atoi(argv[++j]);
} else if (!strcmp(argv[j], "--enable-amp")) {
HackRF.enable_amp = 1;
} else {
return false;
}
*jptr = j;
return true;
}
void hackRFShowHelp()
{
printf(" HackRF-specific options (use with --device-type hackrf)\n");
printf("\n");
printf("--enable-amp enable amplifier)\n");
printf("--lna-gain set LNA gain (Range 0-40 in 8dB steps))\n");
printf("--vga-gain set VGA gain (Range 0-62 in 2dB steps))\n");
printf("--samplerate set sample rate)\n");
printf("--ppm ppm correction)\n");
printf("\n");
}
static void show_config()
{
fprintf(stderr, "freq : %" PRIu64 "\n", HackRF.freq);
fprintf(stderr, "lna_gain : %d\n", HackRF.lna_gain);
fprintf(stderr, "vga_gain : %d\n", HackRF.vga_gain);
fprintf(stderr, "samplerate : %d\n", HackRF.rate);
fprintf(stderr, "ppm : %d\n", HackRF.ppm);
}
bool hackRFOpen()
{
if (HackRF.device) {
return true;
}
// Calculate sample rate and frequency deviation if ppm is specified
if (HackRF.ppm != 0) {
HackRF.rate = (uint32_t)((double)HackRF.rate * (1000000 - HackRF.ppm)/1000000+0.5);
HackRF.freq = HackRF.freq * (1000000 - HackRF.ppm)/1000000;
}
int status;
status = hackrf_init();
if (status != 0) {
fprintf(stderr, "HackRF: hackrf_init failed with code %d\n", status);
return false;
}
status = hackrf_open(&HackRF.device);
if (status != 0) {
fprintf(stderr, "HackRF: hackrf_open failed with code %d\n", status);
hackrf_exit();
return false;
}
status = hackrf_set_freq(HackRF.device, HackRF.freq);
if (status != 0) {
fprintf(stderr, "HackRF: hackrf_set_freq failed with code %d\n", status);
hackrf_close(HackRF.device);
hackrf_exit();
return false;
}
status = hackrf_set_sample_rate(HackRF.device, HackRF.rate);
if (status != 0) {
fprintf(stderr, "HackRF: hackrf_set_sample_rate failed with code %d\n", status);
hackrf_close(HackRF.device);
hackrf_exit();
return false;
}
status = hackrf_set_amp_enable(HackRF.device, HackRF.enable_amp);
if (status != 0) {
fprintf(stderr, "HackRF: hackrf_set_amp_enable failed with code %d\n", status);
hackrf_close(HackRF.device);
hackrf_exit();
return false;
}
status = hackrf_set_lna_gain(HackRF.device, HackRF.lna_gain);
if (status != 0) {
fprintf(stderr, "HackRF: hackrf_set_lna_gain failed with code %d\n", status);
hackrf_close(HackRF.device);
hackrf_exit();
return false;
}
status = hackrf_set_vga_gain(HackRF.device, HackRF.vga_gain);
if (status != 0) {
fprintf(stderr, "HackRF: hackrf_set_vga_gain failed with code %d\n", status);
hackrf_close(HackRF.device);
hackrf_exit();
return false;
}
show_config();
HackRF.converter = init_converter(INPUT_UC8,
Modes.sample_rate,
Modes.dc_filter,
&HackRF.converter_state);
if (!HackRF.converter) {
fprintf(stderr, "HackRF: can't initialize sample converter\n");
return false;
}
return true;
}
static int handle_hackrf_samples(hackrf_transfer *transfer)
{
static unsigned dropped = 0;
static uint64_t sampleCounter = 0;
sdrMonitor();
if (Modes.exit || transfer->valid_length < 0)
return -1;
uint8_t *buf = transfer->buffer;
unsigned len = transfer->valid_length;
// Values returned by HackRF need conversion from signed to unsigned
for (unsigned i = 0; i < len; i++) {
buf[i] ^= (uint8_t)0x80;
}
unsigned samples_read = len / 2; // Drops any trailing odd sample, that's OK
struct mag_buf *outbuf = fifo_acquire(0 /* don't wait */);
if (!outbuf) {
// FIFO is full. Drop this block.
dropped += samples_read;
sampleCounter += samples_read;
return 0;
}
outbuf->flags = 0;
if (dropped) {
// We previously dropped some samples due to no buffers being available
outbuf->flags |= MAGBUF_DISCONTINUOUS;
outbuf->dropped = dropped;
}
dropped = 0;
// Compute the sample timestamp and system timestamp for the start of the block
outbuf->sampleTimestamp = sampleCounter * 12e6 / Modes.sample_rate;
sampleCounter += samples_read;
// Get the approx system time for the start of this block
uint64_t block_duration = 1e3 * samples_read / Modes.sample_rate;
outbuf->sysTimestamp = mstime() - block_duration;
// Convert the new data
unsigned to_convert = samples_read;
if (to_convert + outbuf->overlap > outbuf->totalLength) {
// how did that happen?
to_convert = outbuf->totalLength - outbuf->overlap;
dropped = samples_read - to_convert;
}
HackRF.converter(buf, &outbuf->data[outbuf->overlap], to_convert, HackRF.converter_state, &outbuf->mean_level, &outbuf->mean_power);
outbuf->validLength = outbuf->overlap + to_convert;
// Push to the demodulation thread
fifo_enqueue(outbuf);
return 0;
}
void hackRFRun()
{
if (!HackRF.device) {
fprintf(stderr, "hackRFRun: HackRF.device = NULL\n");
return;
}
int status = hackrf_start_rx(HackRF.device, &handle_hackrf_samples, NULL);
if (status != 0) {
fprintf(stderr, "hackrf_start_rx failed\n");
hackrf_close(HackRF.device);
hackrf_exit();
exit (1);
}
// hackrf_start_rx does not block so we need to wait until the streaming is finished
// before returning from the hackRFRun function
while (hackrf_is_streaming(HackRF.device) == HACKRF_TRUE) {
struct timespec slp = { 0, 100 * 1000 * 1000};
nanosleep(&slp, NULL);
}
fprintf(stderr, "HackRF stopped streaming %d\n", hackrf_is_streaming(HackRF.device));
}
void hackRFClose()
{
if (HackRF.device) {
hackrf_close(HackRF.device);
hackrf_exit();
HackRF.device = NULL;
}
}