This repository has been archived by the owner on Nov 8, 2022. It is now read-only.
forked from GoogleCloudPlatform/professional-services
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cloudbuild.yaml
81 lines (80 loc) · 2.53 KB
/
cloudbuild.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
steps:
- name: 'gcr.io/cloud-builders/docker'
id: Pull docker cache
entrypoint: 'bash'
args:
- '-c'
- |
docker pull gcr.io/$PROJECT_ID/airflow-dags-builder:latest || exit 0
- name: gcr.io/cloud-builders/docker
id: Build Airflow DAGs Builder
args: [
'build',
'-t', 'gcr.io/$PROJECT_ID/airflow-dags-builder',
'--cache-from', 'gcr.io/$PROJECT_ID/airflow-dags-builder:latest',
'./'
]
dir: ${_DIRECTORY}
- name: 'gcr.io/$PROJECT_ID/airflow-dags-builder'
id: Validation Test
# Validate the integrity of the DAG files.
entrypoint: python
env:
- AIRFLOW__CORE__DAGS_FOLDER=/workspace/${_DIRECTORY}/dags
args:
- -m
- unittest
- tests/dag_integrity_test.py
dir: ${_DIRECTORY}
- name: 'gcr.io/$PROJECT_ID/airflow-dags-builder'
# Actually run some DAGs with test data, this type of test is less common and requires
# more setup, creating test data sets, ensuring your task IO is configured
# via airflow Variables, etc.
# To succeed, these need to complete before the cloudbuild timeout.
id: End to End Test
entrypoint: bash
env:
- AIRFLOW__CORE__DAGS_FOLDER=/workspace/${_DIRECTORY}/dags
dir: ${_DIRECTORY}
# dir: examples/cloud-composer-cicd
args:
- -c
- |
pwd
ls -l
# Init an empty airflow metadata db
airflow initdb
# Initialise variables to configure airflow DAGs
airflow variables -s input gs://test-input-bucket/
airflow variables -s output gs://test-output-bucket/
# Run a backfill of our DAG for a specific date, add more dags here if required.
airflow backfill echo_and_wait --start_date=2020-01-03 --end_date=2020-01-03
ret=$?
# Cat the task logs so we can see when there was any error
find /workspace/airflow/logs/ -type f -name *.log | sort | xargs cat
# Fail if the backfill failed.
exit $ret
- name: gcr.io/cloud-builders/gsutil
# Deploy the DAGs to your composer environment DAGs GCS folder
id: Deploy DAGs
args:
- -m
- rsync
- -r
- -c
- -x
- .*\.pyc|airflow_monitoring.py
- /workspace/${_DIRECTORY}/dags/
- ${_DEPLOY_DAGS_LOCATION}
dir: ${_DIRECTORY}
images: ['gcr.io/$PROJECT_ID/airflow-dags-builder:latest']