-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmain_forecasting.py
201 lines (151 loc) · 7.47 KB
/
main_forecasting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import torch
import numpy as np
import pandas as pd
from sklearn.metrics import mean_absolute_error, mean_squared_error
from models.rnn.trainer import Trainer_RNN
from models.informer.trainer import Trainer_Informer
from models.scinet.trainer import Trainer_SCINet
class Forecasting():
def __init__(self, config):
"""
Initialize Forecasting class
:param config: config
:type config: dictionary
example (training)
>>> model_name = 'lstm'
>>> model_params = config.model_config[model_name]
>>> data_forecast = mf.Forecasting(model_params)
>>> best_model = data_forecast.train_model(train_data, valid_data) # 모델 학습
>>> data_forecast.save_model(best_model, best_model_path=model_params["best_model_path"]) # 모델 저장
example (testing)
>>> model_name = 'lstm'
>>> model_params = config.model_config[model_name]
>>> data_forecast = mf.Forecasting(model_params)
>>> pred, mse, mae = data_forecast.pred_data(test_data, scaler, best_model_path=model_params["best_model_path"]) # 예측
"""
self.model_name = config['model']
self.parameter = config['parameter']
def build_model(self):
"""
Build model and return initialized model for selected model_name
:return: initialized model
:rtype: model
"""
# build initialized model
if self.model_name == 'lstm':
model = Trainer_RNN(self.parameter, model_name='lstm')
elif self.model_name == 'gru':
model = Trainer_RNN(self.parameter, model_name='gru')
elif self.model_name == 'informer':
model = Trainer_Informer(self.parameter)
elif self.model_name == 'scinet':
model = Trainer_SCINet(self.parameter)
return model
def train_model(self, train_data, valid_data):
"""
Train model and return best model
:param train_data: train data whose shape is (# time steps, 1)
:type train_data: numpy array
:param valid_data: validation data whose shape is (# time steps, 1)
:type valid_data: numpy array
:return: best trained model
:rtype: model
"""
print(f"Start training model: {self.model_name}")
# build train/validation dataloaders
train_loader = self.get_dataloader(train_data, self.parameter['window_size'],
self.parameter['forecast_step'], self.parameter['batch_size'], shuffle=True)
valid_loader = self.get_dataloader(valid_data, self.parameter['window_size'],
self.parameter['forecast_step'], self.parameter['batch_size'], shuffle=False)
# build initialized model
init_model = self.build_model()
# train model
best_model = init_model.fit(train_loader, valid_loader)
return best_model
def save_model(self, best_model, best_model_path):
"""
Save the best trained model
:param best_model: best trained model
:type best_model: model
:param best_model_path: path for saving model
:type best_model_path: str
"""
# save model
torch.save(best_model.state_dict(), best_model_path)
def pred_data(self, test_data, scaler, best_model_path):
"""
Predict future data for test dataset using the best trained model
:param test_data: test data whose shape is (# time steps, 1)
:type test_data: numpy array
:param scaler: scaler fitted on train dataset
:type: MinMaxScaler
:param best_model_path: path for loading the best trained model
:type best_model_path: str
:return: true values and predicted values
:rtype: DataFrame
:return: test mse
:rtype: float
:return: test mae
:rtype: float
"""
print(f"Start testing model: {self.model_name}")
# build test dataloader
test_loader = self.get_dataloader(test_data, self.parameter['window_size'],
self.parameter['forecast_step'], self.parameter['batch_size'], shuffle=False)
# build initialized model
init_model = self.build_model()
# load best model
init_model.model.load_state_dict(torch.load(best_model_path))
# get prediction results
# the number of predicted values = forecast_step * ((len(test_data)-window_size-forecast_step) // forecast_step + 1)
# start time point of prediction = window_size
# end time point of prediction = len(test_data) - (len(test_data)-window_size-forecast_step) % forecast_step - 1
pred_data = init_model.test(test_loader) # shape=(the number of predicted values, 1)
# select true data whose times match that of predicted values
start_idx = self.parameter['window_size']
end_idx = len(test_data) - (len(test_data)-self.parameter['window_size']-self.parameter['forecast_step']) % self.parameter['forecast_step'] - 1
true_data = test_data[start_idx:end_idx+1]
# inverse normalization to original scale
true_data = scaler.inverse_transform(np.expand_dims(true_data, axis=-1))
pred_data = scaler.inverse_transform(pred_data)
true_data = true_data.squeeze(-1) # shape=(the number of predicted values, )
pred_data = pred_data.squeeze(-1) # shape=(the number of predicted values, )
# calculate performance metrics
mse = mean_squared_error(true_data, pred_data)
mae = mean_absolute_error(true_data, pred_data)
# merge true value and predicted value
pred_df = pd.DataFrame()
pred_df['actual_value'] = true_data
pred_df['predicted_value'] = pred_data
return pred_df, mse, mae
def get_dataloader(self, dataset, window_size, forecast_step, batch_size, shuffle):
"""
Get DataLoader
:param dataset: data whose shape is (# time steps, )
:type dataset: numpy array
:param window_size: window size
:type window_size: int
:param forecast_step: forecast step size
:type forecast_step: int
:param batch_size: batch size
:type batch_size: int
:param shuffle: shuffle for making batch
:type shuffle: bool
:return: dataloader
:rtype: DataLoader
"""
# data dimension 확인 및 변환 => shape: (# time steps, 1)
if len(dataset.shape) == 1:
dataset = np.expand_dims(dataset, axis=-1)
# input: window_size 길이의 시계열 데이터
# 전체 데이터를 sliding window 방식(slide 크기=forecast_step)으로 window_size 길이의 time window로 분할하여 input 생성
T = dataset.shape[0]
windows = [dataset[i : i+window_size] for i in range(0, T-window_size-forecast_step+1, forecast_step)]
# target: input의 마지막 시점 이후 forecast_step 시점만큼의 미래 데이터 (예측 정답)
targets = [dataset[i+window_size : i+window_size+forecast_step] for i in range(0, T-window_size-forecast_step+1, forecast_step)]
# torch dataset 구축
dataset = torch.utils.data.TensorDataset(torch.FloatTensor(windows), torch.FloatTensor(targets))
# DataLoader 구축
# windows: shape=(batch_size, window_size, 1) & targets: shape=(batch_size, forecast_step, 1)
data_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)
return data_loader