forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqueuedataset_reader.py
95 lines (85 loc) · 3.21 KB
/
queuedataset_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import yaml
import six
import os
import copy
import paddle.distributed.fleet as fleet
import logging
import numpy as np
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO)
logger = logging.getLogger(__name__)
class Reader(fleet.MultiSlotDataGenerator):
def init(self, config):
self.config = config
padding = 0
sparse_slots = "click 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26"
self.sparse_slots = sparse_slots.strip().split(" ")
self.dense_slots = ["dense_feature"]
self.dense_slots_shape = [13]
self.slots = self.sparse_slots + self.dense_slots
self.slot2index = {}
self.visit = {}
for i in range(len(self.slots)):
self.slot2index[self.slots[i]] = i
self.visit[self.slots[i]] = False
self.padding = padding
logger.info("pipe init success")
def line_process(self, line):
line = line.strip().split(" ")
output = [(i, []) for i in self.slots]
for i in line:
slot_feasign = i.split(":")
slot = slot_feasign[0]
if slot not in self.slots:
continue
if slot in self.sparse_slots:
feasign = int(slot_feasign[1])
else:
feasign = float(slot_feasign[1])
output[self.slot2index[slot]][1].append(feasign)
self.visit[slot] = True
for i in self.visit:
slot = i
if not self.visit[slot]:
if i in self.dense_slots:
output[self.slot2index[i]][1].extend(
[self.padding] *
self.dense_slots_shape[self.slot2index[i]])
else:
output[self.slot2index[i]][1].extend([self.padding])
else:
self.visit[slot] = False
return output
#return [label] + sparse_feature + [dense_feature]
def generate_sample(self, line):
r"Dataset Generator"
def reader():
output_dict = self.line_process(line)
# {key, value} dict format: {'labels': [1], 'sparse_slot1': [2, 3], 'sparse_slot2': [4, 5, 6, 8], 'dense_slot': [1,2,3,4]}
# dict must match static_model.create_feed()
yield output_dict
return reader
if __name__ == "__main__":
yaml_path = sys.argv[1]
utils_path = sys.argv[2]
sys.path.append(utils_path)
import common
yaml_helper = common.YamlHelper()
config = yaml_helper.load_yaml(yaml_path)
r = Reader()
r.init(config)
r.run_from_stdin()