-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpreprocessing.py
295 lines (243 loc) · 11.3 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# -*- coding: utf-8 -*-
'''
----------------------------------------------------------------------------------------------------
This module preprocesses
----------------------------------------------------------------------------------------------------
'''
import segmentation
import pruning
import numpy as np
import skimage.morphology as morph
import skimage.filters.rank as rank
from sklearn.neighbors import NearestNeighbors
class Preprocessing:
def __init__(self, max_distance, id_root=1, id_background=2, id_roothair=3, is_close_gaps=True, is_remove_clusters=True, is_prune=True):
self.id_root = id_root
self.id_background = id_background
self.id_roothair = id_roothair
self.is_close_gaps = is_close_gaps
self.is_remove_clusters = is_remove_clusters
self.is_prune = is_prune
self.max_distance = max_distance
def run(self,classes):
'''
Runs preprocessing pipeline
'''
# classes = self.transform(classes)
# Remove small root components / keep only largest root component
classes = self.removeSmallRootComponents(classes, id_root=self.id_root, id_background=self.id_background)
# Removes root hair clusters far away from root
classes = self.removeFarRootHairs(classes, max_distance=self.max_distance, id_root=self.id_root, id_background=self.id_background, id_roothair=self.id_roothair)
# Close small gaps and remove small clusters
if self.is_close_gaps:
classes = self.close_gaps(classes, size=1)
if self.is_remove_clusters:
# Keeps only largest root part
# Median root hair thickness
rh_thickness = self.get_median_rh_thickness(classes,self.id_roothair)
# Remove small root hair clusters
if rh_thickness is None:
min_size = None
else:
min_size = int(np.ceil((rh_thickness**2))) # min number of pixels in clusters
classes = self.remove_clusters(classes,
id_remove=self.id_roothair, size=min_size)
# Remove small root clusters
if rh_thickness is None:
min_size = None
else:
min_size=int(np.ceil(((10*rh_thickness)**2))) # min number of pixels in clusters
classes = self.remove_clusters(classes,
id_remove=self.id_root, size=min_size)
# Extract medial axis of root hairs
skel, distance = self.get_ma(classes, self.id_root, self.id_roothair)
if self.is_prune:
# Prune medial axis
skel, distance = self.prune(skel, distance)
# Distance on skel
dist_on_skel = distance * skel
# Distance of medial axis to main root
dist_to_root = self.get_dist_to_root(classes,skel,self.id_root)
self.skel, self.dist_on_skel, self.dist_to_root = skel, dist_on_skel, dist_to_root
return skel, dist_on_skel, dist_to_root, classes
def out(self,path):
pass
def removeSmallRootComponents(self, img, id_root=1, id_background=2):
# Adapted from RAG - Root hair detection
# Removes all components of root pixels except for the largest components
rootImg = np.zeros_like(img)
rootPos = np.where(img==id_root)
rootImg[rootPos]=1
largeLabelIdx=0
bigComp=0
labelImg = morph.label(rootImg, background=0, connectivity=1)
#add all big components !!!
for i in np.unique(labelImg):
if i!=0:
comp=np.where(labelImg==i)
if len(comp[0])>bigComp:
largeLabelIdx = i
bigComp=len(comp[0])
# Set all root pixels to background
imgNew = np.array(img)
imgNew[rootPos] = id_background
# Set large root component to root
if largeLabelIdx>0:
imgNew[np.where(labelImg==largeLabelIdx)] = id_root
return imgNew
def removeFarRootHairs(self, img, max_distance=10, id_root=1, id_background=2, id_roothair=3):
# Removes components of root hair components (connected components) if their distance to the root is larger than max_distance
# i.e. floating root hair pixels (such as from noisy classification) are removed
# If there is no root edge, then return original image
roothairImg = np.zeros_like(img)
roothairPos = np.where(img==id_roothair)
roothairImg[roothairPos]=1
edge = self.find_edge(img, id_root) # pixel coordinates of edge of main root
if len(edge) == 0:
return np.array(img)
nbrs = NearestNeighbors(n_neighbors=1)
nbrs.fit(edge)
imgNew = np.array(img)
labelImg = morph.label(roothairImg, background=0, connectivity=1)
for i in np.unique(labelImg):
if i!=0:
comp = np.where(labelImg==i)
coordinates = list(zip(*comp))
# distance to edge and indices (location in 'edge')
edgeDist, edgeIDs = nbrs.kneighbors(coordinates)
if min(edgeDist) > max_distance:
imgNew[comp] = id_background
return imgNew
def close_gaps(self, classes, size=1):
'''
Closes small gaps using binary closing and removes small clusters using
binary opening.
'''
# Close gaps in root hairs
data_RH = np.zeros_like(classes)
data_RH[np.where(classes == self.id_roothair)] = 1
data_RH = morph.binary_closing(data_RH, morph.disk(size))
data_RH = morph.binary_opening(data_RH, morph.disk(size))
# Close gaps in root
data_R = np.zeros_like(classes)
data_R[np.where(classes == self.id_root)] = 1
data_R = morph.binary_closing(data_R, morph.disk(size))
data_R = morph.binary_opening(data_R, morph.disk(size))
# Close gaps in background
data_BG = np.zeros_like(classes)
data_BG[np.where(classes == self.id_background)] = 1
data_BG = morph.binary_closing(data_BG, morph.disk(size))
# data_BG = morph.binary_opening(data_BG, morph.disk(size))
# Merge all together into one array
classes_new = np.zeros_like(classes)
classes_new[np.where(data_BG)] = self.id_background
classes_new[np.where(data_R)] = self.id_root
classes_new[np.where(data_RH)] = self.id_roothair
return classes_new
def get_median_rh_thickness(self, classes, id_roothair):
'''
Computes the median thickness of root hairs
'''
data = np.zeros_like(classes)
data[np.where(classes == id_roothair)] = 1 # where root hair
skel, distance = morph.medial_axis(data, return_distance=True)
dist_on_skel = distance * skel
if sum(sum(dist_on_skel > 0)) > 0:
median_dist = np.median(dist_on_skel[np.where(dist_on_skel > 0)])
return 2.*median_dist
else:
return None
def remove_clusters(self,classes,id_remove,size=10):
'''
Removes small clusters of class id_remove
'''
if size is None:
return classes
data = np.zeros_like(classes,dtype=bool)
data[np.where(classes == id_remove)] = True
data_clean = morph.remove_small_holes(data,area_threshold=size,connectivity=2)
data_clean[np.where(classes != id_remove)] = True
classes_new = data_clean*classes
return classes_new
def get_ma_temp(self,classes,id_root,id_roothair):
'''
Merge root hairs and root to get medial axis
'''
data = np.zeros_like(classes)
data[np.where(classes == id_root)] = 1
data[np.where(classes == id_roothair)] = 1
labels, labels_num = morph.label(data, return_num=True, connectivity=1)
# Compute the medial axis (skeleton) and the distance transform
skel = np.zeros_like(data)
distance = np.zeros_like(data)
for l in range(labels_num):
data_loc = np.zeros_like(data)
data_loc[np.where(labels==l+1)] = 1
skel_loc, distance_loc = morph.medial_axis(data_loc, return_distance=True)
skel, distance = skel+skel_loc, distance+distance_loc
# Clip medial axis of root (keep only root hairs)
data = np.zeros_like(classes)
data[np.where(classes == id_roothair)] = 1
distance = distance * data
skel = skel * data
return skel, distance
def get_ma(self,classes,id_root,id_roothair):
'''
Merge root hairs and root to get medial axis
'''
data = np.zeros_like(classes)
data[np.where(classes == id_root)] = 1
data[np.where(classes == id_roothair)] = 1
# Compute the medial axis (skeleton) and the distance transform
skel, distance = morph.medial_axis(data, return_distance=True, random_state=0)
# Clip medial axis of root (keep only root hairs)
data = np.zeros_like(classes)
data[np.where(classes == id_roothair)] = 1
#distance = distance * data
skel = skel * data
# Fill small holes in medial axis
selem = np.array([ [0,1,0],
[1,0,1],
[0,1,0]])
fill = rank.sum(skel, selem)
skel[np.where(fill == 4)] = 1
return skel, distance
def prune(self,skel,distance):
'''
Prunes medial axis
'''
pruning.prune(skel, distance)
return skel, distance
def get_dist_to_root(self,classes,skel,id_root):
'''
Computes the distance of the root hair medial axis to the main root
'''
edge = self.find_edge(classes, id_root) # pixel coordinates of edge of main root
skel_dist_to_edge = np.zeros(skel.shape)
skelCoords = list(zip(*np.where(skel))) # pixel coordinates of medial axis
if len(edge) > 0 and len(skelCoords) > 0:
nbrs = NearestNeighbors(n_neighbors=1)
nbrs.fit(edge)
# distance to edge and indices (location in 'edge')
edgeDist, edgeIDs = nbrs.kneighbors(skelCoords)
# REMOVES ROOT HAIR PIXELS IF TOO CLOSE TO MAIN ROOT + PLOTS
skel_dist_to_edge = np.zeros(skel.shape,dtype=float)
# Map edge distance onto 2D array for image
for i, index in enumerate(edgeIDs):
skel_dist_to_edge[skelCoords[i]] = edgeDist[i][0]
return skel_dist_to_edge
def find_edge(self,classes, class_id):
'''
Extracts the edge of class_id in the array classes
'''
edge_loc = np.zeros_like(classes)
edge_loc[np.where(classes != class_id)] = 1
edge_mask = np.zeros_like(classes)
edge_mask[np.where(classes == class_id)] = 1
arr = np.array([[1, 1, 1],
[1, 0, 1],
[1, 1, 1]])
n_neighbours_edge = segmentation.Segmentation.numOfNeighbours(edge_loc, arr)
n_neighbours_edge = n_neighbours_edge * edge_mask
edge = list(zip(*np.where(n_neighbours_edge > 0)))
return edge