diff --git a/dev/.buildinfo b/dev/.buildinfo index 0d665572a..64dc4710e 100644 --- a/dev/.buildinfo +++ b/dev/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file records the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 52cad1bfcc428b029319b5ed34a5c1da +config: 71bd5d9b322b531791d52385c8911e0d tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/dev/.doctrees/environment.pickle b/dev/.doctrees/environment.pickle index 9139d53f9..749032aa5 100644 Binary files a/dev/.doctrees/environment.pickle and b/dev/.doctrees/environment.pickle differ diff --git a/dev/.doctrees/notebooks/0.1-Theory.doctree b/dev/.doctrees/notebooks/0.1-Theory.doctree index 221136d61..67f94c9ad 100644 Binary files a/dev/.doctrees/notebooks/0.1-Theory.doctree and b/dev/.doctrees/notebooks/0.1-Theory.doctree differ diff --git a/dev/.doctrees/notebooks/0.2-Creating_networks.doctree b/dev/.doctrees/notebooks/0.2-Creating_networks.doctree index c54c43631..7409a739d 100644 Binary files a/dev/.doctrees/notebooks/0.2-Creating_networks.doctree and b/dev/.doctrees/notebooks/0.2-Creating_networks.doctree differ diff --git a/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree b/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree index 7a3bea037..ecf14f80d 100644 Binary files a/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree and b/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree differ diff --git a/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree b/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree index 5511b6f42..3fd1856e8 100644 Binary files a/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree and b/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree b/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree index 690b19546..81ff71183 100644 Binary files a/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree and b/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree b/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree index 4e96053ae..7b4ff1ff8 100644 Binary files a/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree and b/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree b/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree index 047df90db..c11df91f4 100644 Binary files a/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree and b/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree differ diff --git a/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree b/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree index fed475184..aa72e8b99 100644 Binary files a/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree and b/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/4-Parameter_recovery.doctree b/dev/.doctrees/notebooks/4-Parameter_recovery.doctree index 80c341db5..0eaf11d03 100644 Binary files a/dev/.doctrees/notebooks/4-Parameter_recovery.doctree and b/dev/.doctrees/notebooks/4-Parameter_recovery.doctree differ diff --git a/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree b/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree index a4b634585..e08007d6c 100644 Binary files a/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree and b/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree differ diff --git a/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree b/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree index 770a1af7a..9f211b144 100644 Binary files a/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree and b/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree differ diff --git a/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree b/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree index 5290fcf68..da31eb2c0 100644 Binary files a/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree and b/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree differ diff --git a/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree b/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree index 0b7214d8b..7de00f6a6 100644 Binary files a/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree and b/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree differ diff --git a/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree b/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree index 049a13914..683b2b494 100644 Binary files a/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree and b/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree differ diff --git a/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree b/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree index 8cb10a3b8..c5e42f21a 100644 Binary files a/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree and b/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree differ diff --git a/dev/_images/104541dee629bc15fda1e7a3659348063fedcb68f6b3a1e17939b9137554c0af.png b/dev/_images/104541dee629bc15fda1e7a3659348063fedcb68f6b3a1e17939b9137554c0af.png deleted file mode 100644 index abe396a5a..000000000 Binary files a/dev/_images/104541dee629bc15fda1e7a3659348063fedcb68f6b3a1e17939b9137554c0af.png and /dev/null differ diff --git a/dev/_images/11c6a75a6f55a6904a408a95fe49b927fff7791486097c9f71f7ab7d50adaf32.png b/dev/_images/11c6a75a6f55a6904a408a95fe49b927fff7791486097c9f71f7ab7d50adaf32.png new file mode 100644 index 000000000..11c7fc612 Binary files /dev/null and b/dev/_images/11c6a75a6f55a6904a408a95fe49b927fff7791486097c9f71f7ab7d50adaf32.png differ diff --git a/dev/_images/16b7b6df05c31358cc2642d8087b07e90333d05125939b201b740401654b3726.png b/dev/_images/16b7b6df05c31358cc2642d8087b07e90333d05125939b201b740401654b3726.png deleted file mode 100644 index 7b08b6f37..000000000 Binary files a/dev/_images/16b7b6df05c31358cc2642d8087b07e90333d05125939b201b740401654b3726.png and /dev/null differ diff --git a/dev/_images/184d5b9811d871939bc34fd679111ecf5a387c55701222a6cdb3fb141fa499c6.png b/dev/_images/184d5b9811d871939bc34fd679111ecf5a387c55701222a6cdb3fb141fa499c6.png new file mode 100644 index 000000000..f5222f3d3 Binary files /dev/null and b/dev/_images/184d5b9811d871939bc34fd679111ecf5a387c55701222a6cdb3fb141fa499c6.png differ diff --git a/dev/_images/280784175b8074b62fed60a1a8279c933b9de7b0fd2a0c63ecf8121a1d69701e.png b/dev/_images/280784175b8074b62fed60a1a8279c933b9de7b0fd2a0c63ecf8121a1d69701e.png new file mode 100644 index 000000000..9334d6c63 Binary files /dev/null and b/dev/_images/280784175b8074b62fed60a1a8279c933b9de7b0fd2a0c63ecf8121a1d69701e.png differ diff --git a/dev/_images/c220766790f0ac4c23d169d2a6b8286c1b66ca2bf50f19e9b1c2b87730c5efa1.svg b/dev/_images/2ec19856911096fbe9c3234ef83ab3600af54719c813af4a3f819412cb3c0342.svg similarity index 100% rename from dev/_images/c220766790f0ac4c23d169d2a6b8286c1b66ca2bf50f19e9b1c2b87730c5efa1.svg rename to dev/_images/2ec19856911096fbe9c3234ef83ab3600af54719c813af4a3f819412cb3c0342.svg index ed17b147f..4e573a629 100644 --- a/dev/_images/c220766790f0ac4c23d169d2a6b8286c1b66ca2bf50f19e9b1c2b87730c5efa1.svg +++ b/dev/_images/2ec19856911096fbe9c3234ef83ab3600af54719c813af4a3f819412cb3c0342.svg @@ -9,22 +9,22 @@ %3 - - -hgf_loglike - -hgf_loglike -~ -Potential - - + tonic_volatility_2 tonic_volatility_2 ~ Uniform + + +hgf_loglike + +hgf_loglike +~ +Potential + tonic_volatility_2->hgf_loglike @@ -32,7 +32,7 @@ - + tonic_volatility_3 tonic_volatility_3 diff --git a/dev/_images/30d3e3d7b03ff1b2ea62089e2c65cf5aaedb71a64b8ce60980e55e77f376e9b2.png b/dev/_images/30d3e3d7b03ff1b2ea62089e2c65cf5aaedb71a64b8ce60980e55e77f376e9b2.png new file mode 100644 index 000000000..2999b0f85 Binary files /dev/null and b/dev/_images/30d3e3d7b03ff1b2ea62089e2c65cf5aaedb71a64b8ce60980e55e77f376e9b2.png differ diff --git a/dev/_images/30e5e0bb290ebd0015353211a0b9d60b8f548d961c28de5d42e1cc778f2d99ee.png b/dev/_images/30e5e0bb290ebd0015353211a0b9d60b8f548d961c28de5d42e1cc778f2d99ee.png deleted file mode 100644 index e36a20234..000000000 Binary files a/dev/_images/30e5e0bb290ebd0015353211a0b9d60b8f548d961c28de5d42e1cc778f2d99ee.png and /dev/null differ diff --git a/dev/_images/31878210ab8bc8e42f62a1d279ef8aea66d5431d81eccd7d48d7044bada6493f.png b/dev/_images/31878210ab8bc8e42f62a1d279ef8aea66d5431d81eccd7d48d7044bada6493f.png deleted file mode 100644 index 1ec16b2ff..000000000 Binary files a/dev/_images/31878210ab8bc8e42f62a1d279ef8aea66d5431d81eccd7d48d7044bada6493f.png and /dev/null differ diff --git a/dev/_images/3f44f03c40a1408d814e0143a6022bd8649cbf08148b2cb6b71c6fb7a57b5abc.png b/dev/_images/3f44f03c40a1408d814e0143a6022bd8649cbf08148b2cb6b71c6fb7a57b5abc.png deleted file mode 100644 index 9b9efc767..000000000 Binary files a/dev/_images/3f44f03c40a1408d814e0143a6022bd8649cbf08148b2cb6b71c6fb7a57b5abc.png and /dev/null differ diff --git a/dev/_images/4120e83acd6fd068aac34134402550c24c9831ddbb090e2f8c786d6c31b306d3.png b/dev/_images/4120e83acd6fd068aac34134402550c24c9831ddbb090e2f8c786d6c31b306d3.png new file mode 100644 index 000000000..87f4e4841 Binary files /dev/null and b/dev/_images/4120e83acd6fd068aac34134402550c24c9831ddbb090e2f8c786d6c31b306d3.png differ diff --git a/dev/_images/436064930c29b8dc24feb7445bb927266fc6875efe9f044b96579504fc8d268f.png b/dev/_images/436064930c29b8dc24feb7445bb927266fc6875efe9f044b96579504fc8d268f.png deleted file mode 100644 index e7f5689f8..000000000 Binary files a/dev/_images/436064930c29b8dc24feb7445bb927266fc6875efe9f044b96579504fc8d268f.png and /dev/null differ diff --git a/dev/_images/4779ff3b5faaa0ea280d5666923fd77e5e110d01ecfb615e713b0c9bfdc3a5c1.svg b/dev/_images/4779ff3b5faaa0ea280d5666923fd77e5e110d01ecfb615e713b0c9bfdc3a5c1.svg deleted file mode 100644 index f1455c7f7..000000000 --- a/dev/_images/4779ff3b5faaa0ea280d5666923fd77e5e110d01ecfb615e713b0c9bfdc3a5c1.svg +++ /dev/null @@ -1,135 +0,0 @@ - - - - - - -%3 - - -cluster10 - -10 - - -cluster10 x 320 - -10 x 320 - - - -sigma_temperature - -sigma_temperature -~ -HalfNormal - - - -inverse_temperature - -inverse_temperature -~ -LogNormal - - - -sigma_temperature->inverse_temperature - - - - - -mu_volatility - -mu_volatility -~ -Normal - - - -volatility - -volatility -~ -Normal - - - -mu_volatility->volatility - - - - - -sigma_volatility - -sigma_volatility -~ -HalfNormal - - - -sigma_volatility->volatility - - - - - -mu_temperature - -mu_temperature -~ -Normal - - - -mu_temperature->inverse_temperature - - - - - -log_likelihood - -log_likelihood -~ -CustomDist_log_likelihood - - - -volatility->log_likelihood - - - - - -pointwise_loglikelihood - -pointwise_loglikelihood -~ -Deterministic - - - -volatility->pointwise_loglikelihood - - - - - -inverse_temperature->log_likelihood - - - - - -inverse_temperature->pointwise_loglikelihood - - - - - \ No newline at end of file diff --git a/dev/_images/4a26b707a33e030d5c45a1f4e944945761de5b80b53cefb6aa1b93946163e208.svg b/dev/_images/4a26b707a33e030d5c45a1f4e944945761de5b80b53cefb6aa1b93946163e208.svg new file mode 100644 index 000000000..7173b554d --- /dev/null +++ b/dev/_images/4a26b707a33e030d5c45a1f4e944945761de5b80b53cefb6aa1b93946163e208.svg @@ -0,0 +1,135 @@ + + + + + + +%3 + + +cluster10 + +10 + + +cluster10 x 320 + +10 x 320 + + + +sigma_volatility + +sigma_volatility +~ +HalfNormal + + + +volatility + +volatility +~ +Normal + + + +sigma_volatility->volatility + + + + + +mu_volatility + +mu_volatility +~ +Normal + + + +mu_volatility->volatility + + + + + +sigma_temperature + +sigma_temperature +~ +HalfNormal + + + +inverse_temperature + +inverse_temperature +~ +LogNormal + + + +sigma_temperature->inverse_temperature + + + + + +mu_temperature + +mu_temperature +~ +Normal + + + +mu_temperature->inverse_temperature + + + + + +log_likelihood + +log_likelihood +~ +CustomDist_log_likelihood + + + +volatility->log_likelihood + + + + + +pointwise_loglikelihood + +pointwise_loglikelihood +~ +Deterministic + + + +volatility->pointwise_loglikelihood + + + + + +inverse_temperature->log_likelihood + + + + + +inverse_temperature->pointwise_loglikelihood + + + + + \ No newline at end of file diff --git a/dev/_images/55baec5374c3df09501195a65efa73e1cf494245c1f648934d09fd90566b3557.png b/dev/_images/55baec5374c3df09501195a65efa73e1cf494245c1f648934d09fd90566b3557.png deleted file mode 100644 index 889c56af7..000000000 Binary files a/dev/_images/55baec5374c3df09501195a65efa73e1cf494245c1f648934d09fd90566b3557.png and /dev/null differ diff --git a/dev/_images/585371845e3e43380a5d687c919d467a61b90a049990119425e75fe4135cb55a.png b/dev/_images/585371845e3e43380a5d687c919d467a61b90a049990119425e75fe4135cb55a.png new file mode 100644 index 000000000..74da57f5c Binary files /dev/null and b/dev/_images/585371845e3e43380a5d687c919d467a61b90a049990119425e75fe4135cb55a.png differ diff --git a/dev/_images/5abaaced6cea8092bb4ec4206b471e6ab3c5c27ab5402b5269ffc25dde3ad5bb.png b/dev/_images/5abaaced6cea8092bb4ec4206b471e6ab3c5c27ab5402b5269ffc25dde3ad5bb.png new file mode 100644 index 000000000..595e55c47 Binary files /dev/null and b/dev/_images/5abaaced6cea8092bb4ec4206b471e6ab3c5c27ab5402b5269ffc25dde3ad5bb.png differ diff --git a/dev/_images/6037c7efe4b61ebf811f3276bd4ff9e0ae75026ad168586f2fa8bada3d92c1fc.png b/dev/_images/6037c7efe4b61ebf811f3276bd4ff9e0ae75026ad168586f2fa8bada3d92c1fc.png deleted file mode 100644 index 6f195d6b4..000000000 Binary files a/dev/_images/6037c7efe4b61ebf811f3276bd4ff9e0ae75026ad168586f2fa8bada3d92c1fc.png and /dev/null differ diff --git a/dev/_images/6868c6ba2f08be8bf2c9a604d4c4d7ae7448c5011b5ec7bf504aef0951a2f42d.png b/dev/_images/6868c6ba2f08be8bf2c9a604d4c4d7ae7448c5011b5ec7bf504aef0951a2f42d.png new file mode 100644 index 000000000..b2dddc9f9 Binary files /dev/null and b/dev/_images/6868c6ba2f08be8bf2c9a604d4c4d7ae7448c5011b5ec7bf504aef0951a2f42d.png differ diff --git a/dev/_images/6fd29f084db1f587dbdbca39cbaad9ab38e0eae9287a2cf3d4e7f3e0d60d12f8.png b/dev/_images/6fd29f084db1f587dbdbca39cbaad9ab38e0eae9287a2cf3d4e7f3e0d60d12f8.png deleted file mode 100644 index e34291c52..000000000 Binary files a/dev/_images/6fd29f084db1f587dbdbca39cbaad9ab38e0eae9287a2cf3d4e7f3e0d60d12f8.png and /dev/null differ diff --git a/dev/_images/71b66212da1bc0f7ae468f43f787e263d16799dc001d08dd72951566f615f1c7.png b/dev/_images/71b66212da1bc0f7ae468f43f787e263d16799dc001d08dd72951566f615f1c7.png deleted file mode 100644 index 8abe640d7..000000000 Binary files a/dev/_images/71b66212da1bc0f7ae468f43f787e263d16799dc001d08dd72951566f615f1c7.png and /dev/null differ diff --git a/dev/_images/7b763a10eecf9e229c51fc1ec5b98b5ab15b7008dd8bd28a470235d787d5ec4c.png b/dev/_images/7b763a10eecf9e229c51fc1ec5b98b5ab15b7008dd8bd28a470235d787d5ec4c.png new file mode 100644 index 000000000..f132e945c Binary files /dev/null and b/dev/_images/7b763a10eecf9e229c51fc1ec5b98b5ab15b7008dd8bd28a470235d787d5ec4c.png differ diff --git a/dev/_images/85346a099581628dd1312c93d84f9658020922d399af6795bcc27b4b9161ba7c.png b/dev/_images/85346a099581628dd1312c93d84f9658020922d399af6795bcc27b4b9161ba7c.png new file mode 100644 index 000000000..d4e5d0b81 Binary files /dev/null and b/dev/_images/85346a099581628dd1312c93d84f9658020922d399af6795bcc27b4b9161ba7c.png differ diff --git a/dev/_images/89ea98b573eb008578a77ec200b10bf076a1e9a54ac94cc2464847d94fd27acd.png b/dev/_images/89ea98b573eb008578a77ec200b10bf076a1e9a54ac94cc2464847d94fd27acd.png new file mode 100644 index 000000000..b5f4c0a0e Binary files /dev/null and b/dev/_images/89ea98b573eb008578a77ec200b10bf076a1e9a54ac94cc2464847d94fd27acd.png differ diff --git a/dev/_images/8a7f25196202c5715909eebbb4cee2e77269c88e0409d302da86a99878ceae98.png b/dev/_images/8a7f25196202c5715909eebbb4cee2e77269c88e0409d302da86a99878ceae98.png deleted file mode 100644 index b4899745a..000000000 Binary files a/dev/_images/8a7f25196202c5715909eebbb4cee2e77269c88e0409d302da86a99878ceae98.png and /dev/null differ diff --git a/dev/_images/8b234deb4c25f0f67e9fda83cbe331eb4031c09b8eeefb0720fea24005b6d6d8.png b/dev/_images/8b234deb4c25f0f67e9fda83cbe331eb4031c09b8eeefb0720fea24005b6d6d8.png deleted file mode 100644 index a5c1cedef..000000000 Binary files a/dev/_images/8b234deb4c25f0f67e9fda83cbe331eb4031c09b8eeefb0720fea24005b6d6d8.png and /dev/null differ diff --git a/dev/_images/9441124f3e7925c11d392b9a4aa64ba23354ddddbd6d0612280d1843337b2323.png b/dev/_images/9441124f3e7925c11d392b9a4aa64ba23354ddddbd6d0612280d1843337b2323.png deleted file mode 100644 index 473c420f5..000000000 Binary files a/dev/_images/9441124f3e7925c11d392b9a4aa64ba23354ddddbd6d0612280d1843337b2323.png and /dev/null differ diff --git a/dev/_images/9dbf26954edd959dd84f0333ffb31b157873e7a0327b577f3ee85a64b163c620.png b/dev/_images/9dbf26954edd959dd84f0333ffb31b157873e7a0327b577f3ee85a64b163c620.png deleted file mode 100644 index ecfb9b9d3..000000000 Binary files a/dev/_images/9dbf26954edd959dd84f0333ffb31b157873e7a0327b577f3ee85a64b163c620.png and /dev/null differ diff --git a/dev/_images/a8407d023e57e001a6bb0d8ea97a90317026f017c5999a55e875a62acf75c480.png b/dev/_images/a8407d023e57e001a6bb0d8ea97a90317026f017c5999a55e875a62acf75c480.png new file mode 100644 index 000000000..1e8306756 Binary files /dev/null and b/dev/_images/a8407d023e57e001a6bb0d8ea97a90317026f017c5999a55e875a62acf75c480.png differ diff --git a/dev/_images/aa394735280ac987e906c6d7dd39f79fa321a2a8e57521f82ed99e9d58bf1b2a.png b/dev/_images/aa394735280ac987e906c6d7dd39f79fa321a2a8e57521f82ed99e9d58bf1b2a.png new file mode 100644 index 000000000..0a8d2e30f Binary files /dev/null and b/dev/_images/aa394735280ac987e906c6d7dd39f79fa321a2a8e57521f82ed99e9d58bf1b2a.png differ diff --git a/dev/_images/b2998bb5f0be8a6370728f28bea053fd3e1e9ac68ef3f8de9f7cdb6ba6929130.png b/dev/_images/b2998bb5f0be8a6370728f28bea053fd3e1e9ac68ef3f8de9f7cdb6ba6929130.png deleted file mode 100644 index 0feea5b38..000000000 Binary files a/dev/_images/b2998bb5f0be8a6370728f28bea053fd3e1e9ac68ef3f8de9f7cdb6ba6929130.png and /dev/null differ diff --git a/dev/_images/b37ed6428bddaca0be1574c841328924ef97acbd33d5b763381af2a5f91de923.png b/dev/_images/b37ed6428bddaca0be1574c841328924ef97acbd33d5b763381af2a5f91de923.png new file mode 100644 index 000000000..72d58a70b Binary files /dev/null and b/dev/_images/b37ed6428bddaca0be1574c841328924ef97acbd33d5b763381af2a5f91de923.png differ diff --git a/dev/_images/b86f7486149530399c06c352fb241b24839e056aa888f9aeea7b6a133f24fb30.png b/dev/_images/b86f7486149530399c06c352fb241b24839e056aa888f9aeea7b6a133f24fb30.png deleted file mode 100644 index 6d34d38c3..000000000 Binary files a/dev/_images/b86f7486149530399c06c352fb241b24839e056aa888f9aeea7b6a133f24fb30.png and /dev/null differ diff --git a/dev/_images/bd8e0392cd67cb46904250d853f6d5cb37264ba3483fda1a981cf7be21e1b18b.png b/dev/_images/bd8e0392cd67cb46904250d853f6d5cb37264ba3483fda1a981cf7be21e1b18b.png deleted file mode 100644 index f5e7a8701..000000000 Binary files a/dev/_images/bd8e0392cd67cb46904250d853f6d5cb37264ba3483fda1a981cf7be21e1b18b.png and /dev/null differ diff --git a/dev/_images/bee5208bd524c79751c63095652cdad6671cf54c8393ca0cfe97ad4309c62db7.png b/dev/_images/bee5208bd524c79751c63095652cdad6671cf54c8393ca0cfe97ad4309c62db7.png new file mode 100644 index 000000000..f124f3949 Binary files /dev/null and b/dev/_images/bee5208bd524c79751c63095652cdad6671cf54c8393ca0cfe97ad4309c62db7.png differ diff --git a/dev/_images/c28074c01b0bc626ef26666cf18ba2543eae9a4d3c8c350bf4915151860bd309.png b/dev/_images/c28074c01b0bc626ef26666cf18ba2543eae9a4d3c8c350bf4915151860bd309.png new file mode 100644 index 000000000..a197e587e Binary files /dev/null and b/dev/_images/c28074c01b0bc626ef26666cf18ba2543eae9a4d3c8c350bf4915151860bd309.png differ diff --git a/dev/_images/c2ec5c73a44f3ea4741eb3f35bc61ad413f8f254118e51d9d67cfc799864905d.png b/dev/_images/c2ec5c73a44f3ea4741eb3f35bc61ad413f8f254118e51d9d67cfc799864905d.png deleted file mode 100644 index 270c1199f..000000000 Binary files a/dev/_images/c2ec5c73a44f3ea4741eb3f35bc61ad413f8f254118e51d9d67cfc799864905d.png and /dev/null differ diff --git a/dev/_images/c8207dcc591fe4eef954dde1b8cfe89b7b8c32f6de31037763126c1f39c11a49.png b/dev/_images/c8207dcc591fe4eef954dde1b8cfe89b7b8c32f6de31037763126c1f39c11a49.png new file mode 100644 index 000000000..8a7c3147c Binary files /dev/null and b/dev/_images/c8207dcc591fe4eef954dde1b8cfe89b7b8c32f6de31037763126c1f39c11a49.png differ diff --git a/dev/_images/d025a83a74bb822d57b494b8dce43fc5434adc23686211605e9bc3b6b3c35a06.png b/dev/_images/d025a83a74bb822d57b494b8dce43fc5434adc23686211605e9bc3b6b3c35a06.png deleted file mode 100644 index b68633c35..000000000 Binary files a/dev/_images/d025a83a74bb822d57b494b8dce43fc5434adc23686211605e9bc3b6b3c35a06.png and /dev/null differ diff --git a/dev/_images/d06df607a1cdd92ac928fb7bc93a824eaf2897f54a56f72a67be116a237524fe.png b/dev/_images/d06df607a1cdd92ac928fb7bc93a824eaf2897f54a56f72a67be116a237524fe.png deleted file mode 100644 index 3a0735e98..000000000 Binary files a/dev/_images/d06df607a1cdd92ac928fb7bc93a824eaf2897f54a56f72a67be116a237524fe.png and /dev/null differ diff --git a/dev/_images/d5ea208df46846708a270381ca42f5178a969195a62de40802882fa98991cc03.png b/dev/_images/d5ea208df46846708a270381ca42f5178a969195a62de40802882fa98991cc03.png deleted file mode 100644 index 9c68f5396..000000000 Binary files a/dev/_images/d5ea208df46846708a270381ca42f5178a969195a62de40802882fa98991cc03.png and /dev/null differ diff --git a/dev/_images/da5252a4963dec663decb7db5409b2efbfb13a28684430224d32ef9091192415.png b/dev/_images/da5252a4963dec663decb7db5409b2efbfb13a28684430224d32ef9091192415.png new file mode 100644 index 000000000..5d47cdedf Binary files /dev/null and b/dev/_images/da5252a4963dec663decb7db5409b2efbfb13a28684430224d32ef9091192415.png differ diff --git a/dev/_images/e12221e7ddfa2b7cdd2508e1079926a4175704b138da2b0d08086c7386c78f2f.png b/dev/_images/e12221e7ddfa2b7cdd2508e1079926a4175704b138da2b0d08086c7386c78f2f.png new file mode 100644 index 000000000..4f48a9424 Binary files /dev/null and b/dev/_images/e12221e7ddfa2b7cdd2508e1079926a4175704b138da2b0d08086c7386c78f2f.png differ diff --git a/dev/_images/e5bb7bfdc0af150454a57aca48137cd10bdd456593bdc1e4d15e939d2ab4a890.png b/dev/_images/e5bb7bfdc0af150454a57aca48137cd10bdd456593bdc1e4d15e939d2ab4a890.png new file mode 100644 index 000000000..6bdc375f5 Binary files /dev/null and b/dev/_images/e5bb7bfdc0af150454a57aca48137cd10bdd456593bdc1e4d15e939d2ab4a890.png differ diff --git a/dev/_images/e833eb8b5ce264f099e8724e3d2728738980f40812888ef4c962c988a146fc5f.png b/dev/_images/e833eb8b5ce264f099e8724e3d2728738980f40812888ef4c962c988a146fc5f.png new file mode 100644 index 000000000..d9f7fc288 Binary files /dev/null and b/dev/_images/e833eb8b5ce264f099e8724e3d2728738980f40812888ef4c962c988a146fc5f.png differ diff --git a/dev/_images/eaf1618b37840c04bfe506c0bd10a613f1d70e1cba558fc48a405f782ae90b9b.png b/dev/_images/eaf1618b37840c04bfe506c0bd10a613f1d70e1cba558fc48a405f782ae90b9b.png deleted file mode 100644 index 57f403459..000000000 Binary files a/dev/_images/eaf1618b37840c04bfe506c0bd10a613f1d70e1cba558fc48a405f782ae90b9b.png and /dev/null differ diff --git a/dev/_images/ebe0b8cb3f3999bd8188fc3ed8c0184f1bf606db12fa06b816776e5baa6af885.png b/dev/_images/ebe0b8cb3f3999bd8188fc3ed8c0184f1bf606db12fa06b816776e5baa6af885.png new file mode 100644 index 000000000..af3760ffd Binary files /dev/null and b/dev/_images/ebe0b8cb3f3999bd8188fc3ed8c0184f1bf606db12fa06b816776e5baa6af885.png differ diff --git a/dev/_images/ecd192b619fcda3b40cdb5f737d2b936691486677eb7a4f82b5cbc7f55367e9e.svg b/dev/_images/ecd192b619fcda3b40cdb5f737d2b936691486677eb7a4f82b5cbc7f55367e9e.svg deleted file mode 100644 index 0a0877fe9..000000000 --- a/dev/_images/ecd192b619fcda3b40cdb5f737d2b936691486677eb7a4f82b5cbc7f55367e9e.svg +++ /dev/null @@ -1,35 +0,0 @@ - - - - - - -%3 - - - -hgf_loglike - -hgf_loglike -~ -Potential - - - -tonic_volatility_2 - -tonic_volatility_2 -~ -Uniform - - - -tonic_volatility_2->hgf_loglike - - - - - \ No newline at end of file diff --git a/dev/_images/ed5fb5bc4253363fe3d461d08f1425ed53cd16d154f73902ddcffc4f6c2f5b7a.png b/dev/_images/ed5fb5bc4253363fe3d461d08f1425ed53cd16d154f73902ddcffc4f6c2f5b7a.png new file mode 100644 index 000000000..41d895a70 Binary files /dev/null and b/dev/_images/ed5fb5bc4253363fe3d461d08f1425ed53cd16d154f73902ddcffc4f6c2f5b7a.png differ diff --git a/dev/_images/f40369594f9bd79a678ea8f2c8e1da1dbb6688240993fc7b3e33d245058b129b.png b/dev/_images/f40369594f9bd79a678ea8f2c8e1da1dbb6688240993fc7b3e33d245058b129b.png deleted file mode 100644 index 99bfd562b..000000000 Binary files a/dev/_images/f40369594f9bd79a678ea8f2c8e1da1dbb6688240993fc7b3e33d245058b129b.png and /dev/null differ diff --git a/dev/_images/f54c5b2c67834f5c33afc0b97d8a12f6b4e4c8ee108a3f3a5e1ec517416bf070.png b/dev/_images/f54c5b2c67834f5c33afc0b97d8a12f6b4e4c8ee108a3f3a5e1ec517416bf070.png deleted file mode 100644 index c1cf7bf8d..000000000 Binary files a/dev/_images/f54c5b2c67834f5c33afc0b97d8a12f6b4e4c8ee108a3f3a5e1ec517416bf070.png and /dev/null differ diff --git a/dev/_images/f81da4ce63c873cf56adc0afb010ad9288aa6bdca75241a08824fd0b92e5e34b.png b/dev/_images/f81da4ce63c873cf56adc0afb010ad9288aa6bdca75241a08824fd0b92e5e34b.png new file mode 100644 index 000000000..b2de255fc Binary files /dev/null and b/dev/_images/f81da4ce63c873cf56adc0afb010ad9288aa6bdca75241a08824fd0b92e5e34b.png differ diff --git a/dev/_modules/index.html b/dev/_modules/index.html index eb072475c..74387245e 100644 --- a/dev/_modules/index.html +++ b/dev/_modules/index.html @@ -7,7 +7,7 @@ - Overview: module code — pyhgf 0.0.0.post1.dev0+dbad150 documentation + Overview: module code — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/distribution.html b/dev/_modules/pyhgf/distribution.html index 41f2e8989..227d26be2 100644 --- a/dev/_modules/pyhgf/distribution.html +++ b/dev/_modules/pyhgf/distribution.html @@ -7,7 +7,7 @@ - pyhgf.distribution — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.distribution — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/math.html b/dev/_modules/pyhgf/math.html index 861984e96..a9f474bc3 100644 --- a/dev/_modules/pyhgf/math.html +++ b/dev/_modules/pyhgf/math.html @@ -7,7 +7,7 @@ - pyhgf.math — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.math — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/model/add_nodes.html b/dev/_modules/pyhgf/model/add_nodes.html index 8b215ec85..40de60465 100644 --- a/dev/_modules/pyhgf/model/add_nodes.html +++ b/dev/_modules/pyhgf/model/add_nodes.html @@ -7,7 +7,7 @@ - pyhgf.model.add_nodes — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.model.add_nodes — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/model/hgf.html b/dev/_modules/pyhgf/model/hgf.html index 2e5b98143..957438603 100644 --- a/dev/_modules/pyhgf/model/hgf.html +++ b/dev/_modules/pyhgf/model/hgf.html @@ -7,7 +7,7 @@ - pyhgf.model.hgf — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.model.hgf — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/model/network.html b/dev/_modules/pyhgf/model/network.html index 2bb7b03f8..5b90ac35b 100644 --- a/dev/_modules/pyhgf/model/network.html +++ b/dev/_modules/pyhgf/model/network.html @@ -7,7 +7,7 @@ - pyhgf.model.network — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.model.network — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/plots.html b/dev/_modules/pyhgf/plots.html index 59e5b108f..49386b176 100644 --- a/dev/_modules/pyhgf/plots.html +++ b/dev/_modules/pyhgf/plots.html @@ -7,7 +7,7 @@ - pyhgf.plots — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.plots — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/response.html b/dev/_modules/pyhgf/response.html index 54bd2c017..4a1a20dfc 100644 --- a/dev/_modules/pyhgf/response.html +++ b/dev/_modules/pyhgf/response.html @@ -7,7 +7,7 @@ - pyhgf.response — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.response — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/updates/posterior/categorical.html b/dev/_modules/pyhgf/updates/posterior/categorical.html index 7d01419f0..6c2909391 100644 --- a/dev/_modules/pyhgf/updates/posterior/categorical.html +++ b/dev/_modules/pyhgf/updates/posterior/categorical.html @@ -7,7 +7,7 @@ - pyhgf.updates.posterior.categorical — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.posterior.categorical — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/updates/posterior/continuous/continuous_node_posterior_update.html b/dev/_modules/pyhgf/updates/posterior/continuous/continuous_node_posterior_update.html index bb82434de..039fe39f7 100644 --- a/dev/_modules/pyhgf/updates/posterior/continuous/continuous_node_posterior_update.html +++ b/dev/_modules/pyhgf/updates/posterior/continuous/continuous_node_posterior_update.html @@ -7,7 +7,7 @@ - pyhgf.updates.posterior.continuous.continuous_node_posterior_update — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.posterior.continuous.continuous_node_posterior_update — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/updates/posterior/continuous/continuous_node_posterior_update_ehgf.html b/dev/_modules/pyhgf/updates/posterior/continuous/continuous_node_posterior_update_ehgf.html index 8b3a3a226..79ca07c8a 100644 --- a/dev/_modules/pyhgf/updates/posterior/continuous/continuous_node_posterior_update_ehgf.html +++ b/dev/_modules/pyhgf/updates/posterior/continuous/continuous_node_posterior_update_ehgf.html @@ -7,7 +7,7 @@ - pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/updates/posterior/exponential.html b/dev/_modules/pyhgf/updates/posterior/exponential.html index dce8d233f..24c6fc76a 100644 --- a/dev/_modules/pyhgf/updates/posterior/exponential.html +++ b/dev/_modules/pyhgf/updates/posterior/exponential.html @@ -7,7 +7,7 @@ - pyhgf.updates.posterior.exponential — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.posterior.exponential — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/updates/prediction/binary.html b/dev/_modules/pyhgf/updates/prediction/binary.html index 147340dc8..b83c13a0d 100644 --- a/dev/_modules/pyhgf/updates/prediction/binary.html +++ b/dev/_modules/pyhgf/updates/prediction/binary.html @@ -7,7 +7,7 @@ - pyhgf.updates.prediction.binary — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction.binary — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/updates/prediction/continuous.html b/dev/_modules/pyhgf/updates/prediction/continuous.html index 3bd7a48a5..155e460ac 100644 --- a/dev/_modules/pyhgf/updates/prediction/continuous.html +++ b/dev/_modules/pyhgf/updates/prediction/continuous.html @@ -7,7 +7,7 @@ - pyhgf.updates.prediction.continuous — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction.continuous — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/updates/prediction/dirichlet.html b/dev/_modules/pyhgf/updates/prediction/dirichlet.html index c6ece81b1..eec235759 100644 --- a/dev/_modules/pyhgf/updates/prediction/dirichlet.html +++ b/dev/_modules/pyhgf/updates/prediction/dirichlet.html @@ -7,7 +7,7 @@ - pyhgf.updates.prediction.dirichlet — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction.dirichlet — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/updates/prediction_error/binary.html b/dev/_modules/pyhgf/updates/prediction_error/binary.html index b23499bd5..d6917e8b2 100644 --- a/dev/_modules/pyhgf/updates/prediction_error/binary.html +++ b/dev/_modules/pyhgf/updates/prediction_error/binary.html @@ -7,7 +7,7 @@ - pyhgf.updates.prediction_error.binary — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.binary — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/updates/prediction_error/categorical.html b/dev/_modules/pyhgf/updates/prediction_error/categorical.html index 9ab45e177..428286718 100644 --- a/dev/_modules/pyhgf/updates/prediction_error/categorical.html +++ b/dev/_modules/pyhgf/updates/prediction_error/categorical.html @@ -7,7 +7,7 @@ - pyhgf.updates.prediction_error.categorical — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.categorical — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/updates/prediction_error/continuous.html b/dev/_modules/pyhgf/updates/prediction_error/continuous.html index b7a56679e..60e74ad98 100644 --- a/dev/_modules/pyhgf/updates/prediction_error/continuous.html +++ b/dev/_modules/pyhgf/updates/prediction_error/continuous.html @@ -7,7 +7,7 @@ - pyhgf.updates.prediction_error.continuous — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.continuous — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/updates/prediction_error/dirichlet.html b/dev/_modules/pyhgf/updates/prediction_error/dirichlet.html index a1dbe3c83..6e876e9b2 100644 --- a/dev/_modules/pyhgf/updates/prediction_error/dirichlet.html +++ b/dev/_modules/pyhgf/updates/prediction_error/dirichlet.html @@ -7,7 +7,7 @@ - pyhgf.updates.prediction_error.dirichlet — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.dirichlet — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/updates/prediction_error/exponential.html b/dev/_modules/pyhgf/updates/prediction_error/exponential.html index c2d6c29de..306adbaad 100644 --- a/dev/_modules/pyhgf/updates/prediction_error/exponential.html +++ b/dev/_modules/pyhgf/updates/prediction_error/exponential.html @@ -7,7 +7,7 @@ - pyhgf.updates.prediction_error.exponential — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.exponential — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/utils/add_edges.html b/dev/_modules/pyhgf/utils/add_edges.html index 84448b4e3..9ca7adb5e 100644 --- a/dev/_modules/pyhgf/utils/add_edges.html +++ b/dev/_modules/pyhgf/utils/add_edges.html @@ -7,7 +7,7 @@ - pyhgf.utils.add_edges — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.add_edges — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/utils/add_parent.html b/dev/_modules/pyhgf/utils/add_parent.html index cb4558b98..19b504c9e 100644 --- a/dev/_modules/pyhgf/utils/add_parent.html +++ b/dev/_modules/pyhgf/utils/add_parent.html @@ -7,7 +7,7 @@ - pyhgf.utils.add_parent — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.add_parent — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/utils/beliefs_propagation.html b/dev/_modules/pyhgf/utils/beliefs_propagation.html index 3c3936689..b491a4f97 100644 --- a/dev/_modules/pyhgf/utils/beliefs_propagation.html +++ b/dev/_modules/pyhgf/utils/beliefs_propagation.html @@ -7,7 +7,7 @@ - pyhgf.utils.beliefs_propagation — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.beliefs_propagation — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/utils/fill_categorical_state_node.html b/dev/_modules/pyhgf/utils/fill_categorical_state_node.html index 8042b76d9..a0590118e 100644 --- a/dev/_modules/pyhgf/utils/fill_categorical_state_node.html +++ b/dev/_modules/pyhgf/utils/fill_categorical_state_node.html @@ -7,7 +7,7 @@ - pyhgf.utils.fill_categorical_state_node — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.fill_categorical_state_node — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/utils/get_input_idxs.html b/dev/_modules/pyhgf/utils/get_input_idxs.html index 9a64d8466..3380b36ec 100644 --- a/dev/_modules/pyhgf/utils/get_input_idxs.html +++ b/dev/_modules/pyhgf/utils/get_input_idxs.html @@ -7,7 +7,7 @@ - pyhgf.utils.get_input_idxs — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.get_input_idxs — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/utils/get_update_sequence.html b/dev/_modules/pyhgf/utils/get_update_sequence.html index 7157e0a9e..205b10dc7 100644 --- a/dev/_modules/pyhgf/utils/get_update_sequence.html +++ b/dev/_modules/pyhgf/utils/get_update_sequence.html @@ -7,7 +7,7 @@ - pyhgf.utils.get_update_sequence — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.get_update_sequence — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/utils/list_branches.html b/dev/_modules/pyhgf/utils/list_branches.html index 5cabf3a63..1b6353511 100644 --- a/dev/_modules/pyhgf/utils/list_branches.html +++ b/dev/_modules/pyhgf/utils/list_branches.html @@ -7,7 +7,7 @@ - pyhgf.utils.list_branches — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.list_branches — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/utils/remove_node.html b/dev/_modules/pyhgf/utils/remove_node.html index 68adc82dd..35d3f9dee 100644 --- a/dev/_modules/pyhgf/utils/remove_node.html +++ b/dev/_modules/pyhgf/utils/remove_node.html @@ -7,7 +7,7 @@ - pyhgf.utils.remove_node — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.remove_node — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_modules/pyhgf/utils/to_pandas.html b/dev/_modules/pyhgf/utils/to_pandas.html index eeac3e908..350923b93 100644 --- a/dev/_modules/pyhgf/utils/to_pandas.html +++ b/dev/_modules/pyhgf/utils/to_pandas.html @@ -7,7 +7,7 @@ - pyhgf.utils.to_pandas — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.to_pandas — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/_static/documentation_options.js b/dev/_static/documentation_options.js index 7c4c86535..f3d26b061 100644 --- a/dev/_static/documentation_options.js +++ b/dev/_static/documentation_options.js @@ -1,5 +1,5 @@ const DOCUMENTATION_OPTIONS = { - VERSION: '0.0.0.post1.dev0+dbad150', + VERSION: '0.0.0.post1.dev0+c65e161', LANGUAGE: 'en', COLLAPSE_INDEX: false, BUILDER: 'html', diff --git a/dev/api.html b/dev/api.html index 89bb5ebfc..8a445f450 100644 --- a/dev/api.html +++ b/dev/api.html @@ -8,7 +8,7 @@ - API — pyhgf 0.0.0.post1.dev0+dbad150 documentation + API — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/cite.html b/dev/cite.html index d09aa8e67..ef1085522 100644 --- a/dev/cite.html +++ b/dev/cite.html @@ -8,7 +8,7 @@ - How to cite? — pyhgf 0.0.0.post1.dev0+dbad150 documentation + How to cite? — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.html b/dev/generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.html index bb1834719..fe8750e6b 100644 --- a/dev/generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.html +++ b/dev/generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.html @@ -8,7 +8,7 @@ - pyhgf.distribution.HGFDistribution — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.distribution.HGFDistribution — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.html b/dev/generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.html index f34f65a2e..818a29f70 100644 --- a/dev/generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.html +++ b/dev/generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.html @@ -8,7 +8,7 @@ - pyhgf.distribution.HGFLogpGradOp — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.distribution.HGFLogpGradOp — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.html b/dev/generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.html index f6ee56ddc..53fea2545 100644 --- a/dev/generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.html +++ b/dev/generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.html @@ -8,7 +8,7 @@ - pyhgf.distribution.HGFPointwise — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.distribution.HGFPointwise — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.html b/dev/generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.html index 90f6090bd..84f93d9ee 100644 --- a/dev/generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.html +++ b/dev/generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.html @@ -8,7 +8,7 @@ - pyhgf.distribution.hgf_logp — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.distribution.hgf_logp — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.distribution/pyhgf.distribution.logp.html b/dev/generated/pyhgf.distribution/pyhgf.distribution.logp.html index c7a8ebee5..5ac71aeb3 100644 --- a/dev/generated/pyhgf.distribution/pyhgf.distribution.logp.html +++ b/dev/generated/pyhgf.distribution/pyhgf.distribution.logp.html @@ -8,7 +8,7 @@ - pyhgf.distribution.logp — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.distribution.logp — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.math/pyhgf.math.MultivariateNormal.html b/dev/generated/pyhgf.math/pyhgf.math.MultivariateNormal.html index 120b98f35..d9ab511f4 100644 --- a/dev/generated/pyhgf.math/pyhgf.math.MultivariateNormal.html +++ b/dev/generated/pyhgf.math/pyhgf.math.MultivariateNormal.html @@ -8,7 +8,7 @@ - pyhgf.math.MultivariateNormal — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.math.MultivariateNormal — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.math/pyhgf.math.Normal.html b/dev/generated/pyhgf.math/pyhgf.math.Normal.html index c1ff97c94..7bce19ddd 100644 --- a/dev/generated/pyhgf.math/pyhgf.math.Normal.html +++ b/dev/generated/pyhgf.math/pyhgf.math.Normal.html @@ -8,7 +8,7 @@ - pyhgf.math.Normal — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.math.Normal — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.math/pyhgf.math.binary_surprise.html b/dev/generated/pyhgf.math/pyhgf.math.binary_surprise.html index 32f7e43e5..e8f4f20d7 100644 --- a/dev/generated/pyhgf.math/pyhgf.math.binary_surprise.html +++ b/dev/generated/pyhgf.math/pyhgf.math.binary_surprise.html @@ -8,7 +8,7 @@ - pyhgf.math.binary_surprise — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.math.binary_surprise — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.html b/dev/generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.html index 733b66053..360aba775 100644 --- a/dev/generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.html +++ b/dev/generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.html @@ -8,7 +8,7 @@ - pyhgf.math.binary_surprise_finite_precision — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.math.binary_surprise_finite_precision — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.html b/dev/generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.html index f56bab4af..d0e6bf0fa 100644 --- a/dev/generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.html +++ b/dev/generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.html @@ -8,7 +8,7 @@ - pyhgf.math.dirichlet_kullback_leibler — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.math.dirichlet_kullback_leibler — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.math/pyhgf.math.gaussian_density.html b/dev/generated/pyhgf.math/pyhgf.math.gaussian_density.html index 0b52325e9..dd53988d0 100644 --- a/dev/generated/pyhgf.math/pyhgf.math.gaussian_density.html +++ b/dev/generated/pyhgf.math/pyhgf.math.gaussian_density.html @@ -8,7 +8,7 @@ - pyhgf.math.gaussian_density — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.math.gaussian_density — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.html b/dev/generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.html index 85a3b9ecd..7312a65ca 100644 --- a/dev/generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.html +++ b/dev/generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.html @@ -8,7 +8,7 @@ - pyhgf.math.gaussian_predictive_distribution — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.math.gaussian_predictive_distribution — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.math/pyhgf.math.gaussian_surprise.html b/dev/generated/pyhgf.math/pyhgf.math.gaussian_surprise.html index 5b9357df5..82c7a9758 100644 --- a/dev/generated/pyhgf.math/pyhgf.math.gaussian_surprise.html +++ b/dev/generated/pyhgf.math/pyhgf.math.gaussian_surprise.html @@ -8,7 +8,7 @@ - pyhgf.math.gaussian_surprise — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.math.gaussian_surprise — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.math/pyhgf.math.sigmoid.html b/dev/generated/pyhgf.math/pyhgf.math.sigmoid.html index ab8926391..7af0ed002 100644 --- a/dev/generated/pyhgf.math/pyhgf.math.sigmoid.html +++ b/dev/generated/pyhgf.math/pyhgf.math.sigmoid.html @@ -8,7 +8,7 @@ - pyhgf.math.sigmoid — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.math.sigmoid — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.model/pyhgf.model.HGF.html b/dev/generated/pyhgf.model/pyhgf.model.HGF.html index bc1bf2c33..f8c5a4980 100644 --- a/dev/generated/pyhgf.model/pyhgf.model.HGF.html +++ b/dev/generated/pyhgf.model/pyhgf.model.HGF.html @@ -8,7 +8,7 @@ - pyhgf.model.HGF — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.model.HGF — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.model/pyhgf.model.Network.html b/dev/generated/pyhgf.model/pyhgf.model.Network.html index 9a43e8b2f..4726c5b53 100644 --- a/dev/generated/pyhgf.model/pyhgf.model.Network.html +++ b/dev/generated/pyhgf.model/pyhgf.model.Network.html @@ -8,7 +8,7 @@ - pyhgf.model.Network — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.model.Network — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.model/pyhgf.model.add_binary_state.html b/dev/generated/pyhgf.model/pyhgf.model.add_binary_state.html index 999125bd0..a7833a127 100644 --- a/dev/generated/pyhgf.model/pyhgf.model.add_binary_state.html +++ b/dev/generated/pyhgf.model/pyhgf.model.add_binary_state.html @@ -8,7 +8,7 @@ - pyhgf.model.add_binary_state — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.model.add_binary_state — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.model/pyhgf.model.add_categorical_state.html b/dev/generated/pyhgf.model/pyhgf.model.add_categorical_state.html index 0b21adacc..3fdf747ad 100644 --- a/dev/generated/pyhgf.model/pyhgf.model.add_categorical_state.html +++ b/dev/generated/pyhgf.model/pyhgf.model.add_categorical_state.html @@ -8,7 +8,7 @@ - pyhgf.model.add_categorical_state — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.model.add_categorical_state — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.model/pyhgf.model.add_continuous_state.html b/dev/generated/pyhgf.model/pyhgf.model.add_continuous_state.html index 093112cd7..441fec92b 100644 --- a/dev/generated/pyhgf.model/pyhgf.model.add_continuous_state.html +++ b/dev/generated/pyhgf.model/pyhgf.model.add_continuous_state.html @@ -8,7 +8,7 @@ - pyhgf.model.add_continuous_state — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.model.add_continuous_state — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.model/pyhgf.model.add_dp_state.html b/dev/generated/pyhgf.model/pyhgf.model.add_dp_state.html index 2fd16b7af..da75638d8 100644 --- a/dev/generated/pyhgf.model/pyhgf.model.add_dp_state.html +++ b/dev/generated/pyhgf.model/pyhgf.model.add_dp_state.html @@ -8,7 +8,7 @@ - pyhgf.model.add_dp_state — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.model.add_dp_state — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.model/pyhgf.model.add_ef_state.html b/dev/generated/pyhgf.model/pyhgf.model.add_ef_state.html index ba9802784..d1a628a8f 100644 --- a/dev/generated/pyhgf.model/pyhgf.model.add_ef_state.html +++ b/dev/generated/pyhgf.model/pyhgf.model.add_ef_state.html @@ -8,7 +8,7 @@ - pyhgf.model.add_ef_state — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.model.add_ef_state — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.model/pyhgf.model.get_couplings.html b/dev/generated/pyhgf.model/pyhgf.model.get_couplings.html index 691116f73..960b69520 100644 --- a/dev/generated/pyhgf.model/pyhgf.model.get_couplings.html +++ b/dev/generated/pyhgf.model/pyhgf.model.get_couplings.html @@ -8,7 +8,7 @@ - pyhgf.model.get_couplings — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.model.get_couplings — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.model/pyhgf.model.insert_nodes.html b/dev/generated/pyhgf.model/pyhgf.model.insert_nodes.html index 0118e84a7..43801af41 100644 --- a/dev/generated/pyhgf.model/pyhgf.model.insert_nodes.html +++ b/dev/generated/pyhgf.model/pyhgf.model.insert_nodes.html @@ -8,7 +8,7 @@ - pyhgf.model.insert_nodes — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.model.insert_nodes — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.model/pyhgf.model.update_parameters.html b/dev/generated/pyhgf.model/pyhgf.model.update_parameters.html index 78084c152..293017503 100644 --- a/dev/generated/pyhgf.model/pyhgf.model.update_parameters.html +++ b/dev/generated/pyhgf.model/pyhgf.model.update_parameters.html @@ -8,7 +8,7 @@ - pyhgf.model.update_parameters — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.model.update_parameters — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.plots/pyhgf.plots.plot_correlations.html b/dev/generated/pyhgf.plots/pyhgf.plots.plot_correlations.html index 538eabb8b..9471fc5f3 100644 --- a/dev/generated/pyhgf.plots/pyhgf.plots.plot_correlations.html +++ b/dev/generated/pyhgf.plots/pyhgf.plots.plot_correlations.html @@ -8,7 +8,7 @@ - pyhgf.plots.plot_correlations — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.plots.plot_correlations — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.plots/pyhgf.plots.plot_network.html b/dev/generated/pyhgf.plots/pyhgf.plots.plot_network.html index 6498e7f5f..b256af502 100644 --- a/dev/generated/pyhgf.plots/pyhgf.plots.plot_network.html +++ b/dev/generated/pyhgf.plots/pyhgf.plots.plot_network.html @@ -8,7 +8,7 @@ - pyhgf.plots.plot_network — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.plots.plot_network — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.plots/pyhgf.plots.plot_nodes.html b/dev/generated/pyhgf.plots/pyhgf.plots.plot_nodes.html index 74f8a8031..3a0fb2c22 100644 --- a/dev/generated/pyhgf.plots/pyhgf.plots.plot_nodes.html +++ b/dev/generated/pyhgf.plots/pyhgf.plots.plot_nodes.html @@ -8,7 +8,7 @@ - pyhgf.plots.plot_nodes — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.plots.plot_nodes — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.plots/pyhgf.plots.plot_trajectories.html b/dev/generated/pyhgf.plots/pyhgf.plots.plot_trajectories.html index b0ce58ef1..04db5f8e1 100644 --- a/dev/generated/pyhgf.plots/pyhgf.plots.plot_trajectories.html +++ b/dev/generated/pyhgf.plots/pyhgf.plots.plot_trajectories.html @@ -8,7 +8,7 @@ - pyhgf.plots.plot_trajectories — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.plots.plot_trajectories — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.response/pyhgf.response.binary_softmax.html b/dev/generated/pyhgf.response/pyhgf.response.binary_softmax.html index 8b9568f9e..0740222e1 100644 --- a/dev/generated/pyhgf.response/pyhgf.response.binary_softmax.html +++ b/dev/generated/pyhgf.response/pyhgf.response.binary_softmax.html @@ -8,7 +8,7 @@ - pyhgf.response.binary_softmax — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.response.binary_softmax — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.html b/dev/generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.html index e098906ab..f9b6ea886 100644 --- a/dev/generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.html +++ b/dev/generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.html @@ -8,7 +8,7 @@ - pyhgf.response.binary_softmax_inverse_temperature — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.response.binary_softmax_inverse_temperature — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.html b/dev/generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.html index d46c7231a..e6d51fa36 100644 --- a/dev/generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.html +++ b/dev/generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.html @@ -8,7 +8,7 @@ - pyhgf.response.first_level_binary_surprise — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.response.first_level_binary_surprise — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.html b/dev/generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.html index 6872a2952..3c7d27c0a 100644 --- a/dev/generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.html +++ b/dev/generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.html @@ -8,7 +8,7 @@ - pyhgf.response.first_level_gaussian_surprise — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.response.first_level_gaussian_surprise — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.html b/dev/generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.html index 1012c48da..84857d368 100644 --- a/dev/generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.html +++ b/dev/generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.html @@ -8,7 +8,7 @@ - pyhgf.response.total_gaussian_surprise — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.response.total_gaussian_surprise — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.html b/dev/generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.html index c124ff1ef..6eccc2e49 100644 --- a/dev/generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.html +++ b/dev/generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.html @@ -8,7 +8,7 @@ - pyhgf.updates.posterior.categorical.categorical_state_update — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.posterior.categorical.categorical_state_update — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.html b/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.html index 13569f750..225f48e89 100644 --- a/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.html +++ b/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.html @@ -8,7 +8,7 @@ - pyhgf.updates.posterior.continuous.continuous_node_posterior_update — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.posterior.continuous.continuous_node_posterior_update — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.html b/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.html index 912ed4f9f..668ae779c 100644 --- a/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.html +++ b/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.html @@ -8,7 +8,7 @@ - pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.html b/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.html index 51b88f962..8dc295f94 100644 --- a/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.html +++ b/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.html @@ -8,7 +8,7 @@ - pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.html b/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.html index 6c5cc44e0..3cf3694b7 100644 --- a/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.html +++ b/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.html @@ -8,7 +8,7 @@ - pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family_dynamic.html b/dev/generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family_dynamic.html index d341afd84..83ce4e3d8 100644 --- a/dev/generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family_dynamic.html +++ b/dev/generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family_dynamic.html @@ -8,7 +8,7 @@ - pyhgf.updates.posterior.exponential.posterior_update_exponential_family_dynamic — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.posterior.exponential.posterior_update_exponential_family_dynamic — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.html b/dev/generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.html index ed0cf3314..9785e3196 100644 --- a/dev/generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.html +++ b/dev/generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction.binary.binary_state_node_prediction — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction.binary.binary_state_node_prediction — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.html b/dev/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.html index 4ab9620b8..5415412d6 100644 --- a/dev/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.html +++ b/dev/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction.continuous.continuous_node_prediction — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction.continuous.continuous_node_prediction — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.html b/dev/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.html index dc55e9f1d..9b69b58fe 100644 --- a/dev/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.html +++ b/dev/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction.continuous.predict_mean — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction.continuous.predict_mean — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.html b/dev/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.html index 2b1557cf2..df9688337 100644 --- a/dev/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.html +++ b/dev/generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction.continuous.predict_precision — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction.continuous.predict_precision — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.html b/dev/generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.html index c186a6d41..0879fcbf2 100644 --- a/dev/generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.html +++ b/dev/generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.html b/dev/generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.html index 59d8f4ea7..18eb8ed84 100644 --- a/dev/generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.html +++ b/dev/generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.html b/dev/generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.html index 68ba77e22..c3b7ee200 100644 --- a/dev/generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.html +++ b/dev/generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.html b/dev/generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.html index ec18460d3..c5ef634ab 100644 --- a/dev/generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.html +++ b/dev/generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.html b/dev/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.html index dd69b6d27..8661a7abd 100644 --- a/dev/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.html +++ b/dev/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.html b/dev/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.html index be302c7d1..eccc09a96 100644 --- a/dev/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.html +++ b/dev/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.html b/dev/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.html index 9560f1f46..dc36cd3ee 100644 --- a/dev/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.html +++ b/dev/generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.html b/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.html index bb567c288..954201b5e 100644 --- a/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.html +++ b/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction_error.dirichlet.clusters_likelihood — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.dirichlet.clusters_likelihood — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.html b/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.html index acf695185..dad155522 100644 --- a/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.html +++ b/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction_error.dirichlet.create_cluster — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.dirichlet.create_cluster — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.html b/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.html index 439c4e633..9c515b0db 100644 --- a/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.html +++ b/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.html b/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.html index aebce7d3a..ebac726cc 100644 --- a/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.html +++ b/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction_error.dirichlet.get_candidate — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.dirichlet.get_candidate — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.html b/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.html index ce73337fe..5fd05a930 100644 --- a/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.html +++ b/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.html b/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.html index 791996eb3..5fffd1ed1 100644 --- a/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.html +++ b/dev/generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction_error.dirichlet.update_cluster — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.dirichlet.update_cluster — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_dynamic.html b/dev/generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_dynamic.html index 2394f59c3..0bea63ac3 100644 --- a/dev/generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_dynamic.html +++ b/dev/generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_dynamic.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_dynamic — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_dynamic — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_fixed.html b/dev/generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_fixed.html index fae1407fc..0dcbfab49 100644 --- a/dev/generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_fixed.html +++ b/dev/generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_fixed.html @@ -8,7 +8,7 @@ - pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_fixed — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_fixed — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.utils/pyhgf.utils.add_edges.html b/dev/generated/pyhgf.utils/pyhgf.utils.add_edges.html index 06479457a..3aef7a40a 100644 --- a/dev/generated/pyhgf.utils/pyhgf.utils.add_edges.html +++ b/dev/generated/pyhgf.utils/pyhgf.utils.add_edges.html @@ -8,7 +8,7 @@ - pyhgf.utils.add_edges — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.add_edges — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.utils/pyhgf.utils.add_parent.html b/dev/generated/pyhgf.utils/pyhgf.utils.add_parent.html index f6a5de8ea..1df26f378 100644 --- a/dev/generated/pyhgf.utils/pyhgf.utils.add_parent.html +++ b/dev/generated/pyhgf.utils/pyhgf.utils.add_parent.html @@ -8,7 +8,7 @@ - pyhgf.utils.add_parent — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.add_parent — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.html b/dev/generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.html index f9291bb5e..edb583cd4 100644 --- a/dev/generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.html +++ b/dev/generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.html @@ -8,7 +8,7 @@ - pyhgf.utils.beliefs_propagation — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.beliefs_propagation — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.html b/dev/generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.html index 25397bb93..25bffbfaa 100644 --- a/dev/generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.html +++ b/dev/generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.html @@ -8,7 +8,7 @@ - pyhgf.utils.fill_categorical_state_node — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.fill_categorical_state_node — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.utils/pyhgf.utils.get_input_idxs.html b/dev/generated/pyhgf.utils/pyhgf.utils.get_input_idxs.html index 26b9bf404..2429053ca 100644 --- a/dev/generated/pyhgf.utils/pyhgf.utils.get_input_idxs.html +++ b/dev/generated/pyhgf.utils/pyhgf.utils.get_input_idxs.html @@ -8,7 +8,7 @@ - pyhgf.utils.get_input_idxs — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.get_input_idxs — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.utils/pyhgf.utils.get_update_sequence.html b/dev/generated/pyhgf.utils/pyhgf.utils.get_update_sequence.html index 072b638bf..47ce70a4c 100644 --- a/dev/generated/pyhgf.utils/pyhgf.utils.get_update_sequence.html +++ b/dev/generated/pyhgf.utils/pyhgf.utils.get_update_sequence.html @@ -8,7 +8,7 @@ - pyhgf.utils.get_update_sequence — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.get_update_sequence — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.utils/pyhgf.utils.list_branches.html b/dev/generated/pyhgf.utils/pyhgf.utils.list_branches.html index b099002d0..393d2e462 100644 --- a/dev/generated/pyhgf.utils/pyhgf.utils.list_branches.html +++ b/dev/generated/pyhgf.utils/pyhgf.utils.list_branches.html @@ -8,7 +8,7 @@ - pyhgf.utils.list_branches — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.list_branches — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.utils/pyhgf.utils.remove_node.html b/dev/generated/pyhgf.utils/pyhgf.utils.remove_node.html index 8cc7a330f..60d63f1e7 100644 --- a/dev/generated/pyhgf.utils/pyhgf.utils.remove_node.html +++ b/dev/generated/pyhgf.utils/pyhgf.utils.remove_node.html @@ -8,7 +8,7 @@ - pyhgf.utils.remove_node — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.remove_node — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/generated/pyhgf.utils/pyhgf.utils.to_pandas.html b/dev/generated/pyhgf.utils/pyhgf.utils.to_pandas.html index 9315d019d..745bfab0f 100644 --- a/dev/generated/pyhgf.utils/pyhgf.utils.to_pandas.html +++ b/dev/generated/pyhgf.utils/pyhgf.utils.to_pandas.html @@ -8,7 +8,7 @@ - pyhgf.utils.to_pandas — pyhgf 0.0.0.post1.dev0+dbad150 documentation + pyhgf.utils.to_pandas — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/genindex.html b/dev/genindex.html index e421dd45c..887e6d3b0 100644 --- a/dev/genindex.html +++ b/dev/genindex.html @@ -7,7 +7,7 @@ - Index — pyhgf 0.0.0.post1.dev0+dbad150 documentation + Index — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/index.html b/dev/index.html index 4765cb11e..663511108 100644 --- a/dev/index.html +++ b/dev/index.html @@ -8,7 +8,7 @@ - PyHGF: A Neural Network Library for Predictive Coding — pyhgf 0.0.0.post1.dev0+dbad150 documentation + PyHGF: A Neural Network Library for Predictive Coding — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/learn.html b/dev/learn.html index 9c73e58b1..665d48097 100644 --- a/dev/learn.html +++ b/dev/learn.html @@ -8,7 +8,7 @@ - Learn — pyhgf 0.0.0.post1.dev0+dbad150 documentation + Learn — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/notebooks/0.1-Theory.html b/dev/notebooks/0.1-Theory.html index 1fc403958..dc9b0f837 100644 --- a/dev/notebooks/0.1-Theory.html +++ b/dev/notebooks/0.1-Theory.html @@ -8,7 +8,7 @@ - Introduction to the Generalised Hierarchical Gaussian Filter — pyhgf 0.0.0.post1.dev0+dbad150 documentation + Introduction to the Generalised Hierarchical Gaussian Filter — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + @@ -907,14 +907,14 @@

System configuration - Creating and manipulating networks of probabilistic nodes — pyhgf 0.0.0.post1.dev0+dbad150 documentation + Creating and manipulating networks of probabilistic nodes — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + @@ -758,7 +758,7 @@
Continuous value coupling -../_images/9441124f3e7925c11d392b9a4aa64ba23354ddddbd6d0612280d1843337b2323.png +../_images/280784175b8074b62fed60a1a8279c933b9de7b0fd2a0c63ecf8121a1d69701e.png diff --git a/dev/notebooks/0.3-Generalised_filtering.html b/dev/notebooks/0.3-Generalised_filtering.html index b29c81d92..7da9c01f0 100644 --- a/dev/notebooks/0.3-Generalised_filtering.html +++ b/dev/notebooks/0.3-Generalised_filtering.html @@ -8,7 +8,7 @@ - Generalised Bayesian Filtering of exponential family distributions — pyhgf 0.0.0.post1.dev0+dbad150 documentation + Generalised Bayesian Filtering of exponential family distributions — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + @@ -1106,17 +1106,17 @@

System configuration diff --git a/dev/notebooks/1.1-Binary_HGF.html b/dev/notebooks/1.1-Binary_HGF.html index fe18c358e..499e63721 100644 --- a/dev/notebooks/1.1-Binary_HGF.html +++ b/dev/notebooks/1.1-Binary_HGF.html @@ -8,7 +8,7 @@ - The binary Hierarchical Gaussian Filter — pyhgf 0.0.0.post1.dev0+dbad150 documentation + The binary Hierarchical Gaussian Filter — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + @@ -55,7 +55,7 @@ - + @@ -783,7 +783,7 @@

Visualizing the model
-../_images/ecd192b619fcda3b40cdb5f737d2b936691486677eb7a4f82b5cbc7f55367e9e.svg +../_images/7d29572ae423fb4c8d4ea736f01dab651bf0ee09a3d53b5838bcf639ba2eaf01.svg
@@ -806,8 +806,8 @@

Sampling
NUTS: [tonic_volatility_2]
 
-

-
-../_images/f54c5b2c67834f5c33afc0b97d8a12f6b4e4c8ee108a3f3a5e1ec517416bf070.png +../_images/7b763a10eecf9e229c51fc1ec5b98b5ab15b7008dd8bd28a470235d787d5ec4c.png
@@ -860,7 +860,7 @@

Using the learned parameters -../_images/b2998bb5f0be8a6370728f28bea053fd3e1e9ac68ef3f8de9f7cdb6ba6929130.png +../_images/4120e83acd6fd068aac34134402550c24c9831ddbb090e2f8c786d6c31b306d3.png @@ -945,8 +945,8 @@

Sampling#
NUTS: [tonic_volatility_2, tonic_volatility_3]
 
-

-

+

+

 
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 6 seconds.
 
@@ -964,7 +964,7 @@

Sampling#

-../_images/d06df607a1cdd92ac928fb7bc93a824eaf2897f54a56f72a67be116a237524fe.png +../_images/89ea98b573eb008578a77ec200b10bf076a1e9a54ac94cc2464847d94fd27acd.png
@@ -1002,7 +1002,7 @@

Using the learned parameters -../_images/30e5e0bb290ebd0015353211a0b9d60b8f548d961c28de5d42e1cc778f2d99ee.png +../_images/e5bb7bfdc0af150454a57aca48137cd10bdd456593bdc1e4d15e939d2ab4a890.png
-../_images/d5ea208df46846708a270381ca42f5178a969195a62de40802882fa98991cc03.png +../_images/f81da4ce63c873cf56adc0afb010ad9288aa6bdca75241a08824fd0b92e5e34b.png
@@ -835,18 +835,18 @@

System configuration diff --git a/dev/notebooks/1.3-Continuous_HGF.html b/dev/notebooks/1.3-Continuous_HGF.html index 9fba660de..af3031990 100644 --- a/dev/notebooks/1.3-Continuous_HGF.html +++ b/dev/notebooks/1.3-Continuous_HGF.html @@ -8,7 +8,7 @@ - The continuous Hierarchical Gaussian Filter — pyhgf 0.0.0.post1.dev0+dbad150 documentation + The continuous Hierarchical Gaussian Filter — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + @@ -55,7 +55,7 @@ - + @@ -857,8 +857,8 @@

Sampling
NUTS: [tonic_volatility_1]
 
-

-
@@ -924,7 +924,7 @@

Using the learned parameters -
Array(-1106.1058, dtype=float32)
+
Array(-1106.0717, dtype=float32)
 
@@ -997,9 +997,9 @@

Sampling#
NUTS: [tonic_volatility_1]
 
-

-

-
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 7 seconds.
+

+

+
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 8 seconds.
 
We recommend running at least 4 chains for robust computation of convergence diagnostics
@@ -1014,7 +1014,7 @@ 

Sampling#

-../_images/71b66212da1bc0f7ae468f43f787e263d16799dc001d08dd72951566f615f1c7.png +../_images/bee5208bd524c79751c63095652cdad6671cf54c8393ca0cfe97ad4309c62db7.png
@@ -1048,7 +1048,7 @@

Using the learned parameters -../_images/3f44f03c40a1408d814e0143a6022bd8649cbf08148b2cb6b71c6fb7a57b5abc.png +../_images/da5252a4963dec663decb7db5409b2efbfb13a28684430224d32ef9091192415.png

@@ -1058,7 +1058,7 @@

Using the learned parameters - diff --git a/dev/notebooks/2-Using_custom_response_functions.html b/dev/notebooks/2-Using_custom_response_functions.html index 123e6eaee..e9a466bed 100644 --- a/dev/notebooks/2-Using_custom_response_functions.html +++ b/dev/notebooks/2-Using_custom_response_functions.html @@ -8,7 +8,7 @@ - Using custom response models — pyhgf 0.0.0.post1.dev0+dbad150 documentation + Using custom response models — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + @@ -55,7 +55,7 @@ - + @@ -867,8 +867,8 @@

Recovering HGF parameters from the observed behaviors
NUTS: [tonic_volatility_2]
 

-

-

../_images/55baec5374c3df09501195a65efa73e1cf494245c1f648934d09fd90566b3557.png +../_images/e833eb8b5ce264f099e8724e3d2728738980f40812888ef4c962c988a146fc5f.png

The results above indicate that given the responses provided by the participant, the most likely values for the parameter \(\omega_2\) are between -4.9 and -3.1, with a mean at -3.9 (you can find slightly different values if you sample different actions from the decisions function). We can consider this as an excellent estimate given the sparsity of the data, and the complexity of the model.

@@ -963,18 +963,18 @@

System configuration diff --git a/dev/notebooks/3-Multilevel_HGF.html b/dev/notebooks/3-Multilevel_HGF.html index 00548d13f..20c37e4fd 100644 --- a/dev/notebooks/3-Multilevel_HGF.html +++ b/dev/notebooks/3-Multilevel_HGF.html @@ -8,7 +8,7 @@ - Hierarchical Bayesian modelling with probabilistic neural networks — pyhgf 0.0.0.post1.dev0+dbad150 documentation + Hierarchical Bayesian modelling with probabilistic neural networks — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + @@ -55,7 +55,7 @@ - + @@ -786,7 +786,7 @@

Plot the computational graph -../_images/4779ff3b5faaa0ea280d5666923fd77e5e110d01ecfb615e713b0c9bfdc3a5c1.svg +../_images/4a26b707a33e030d5c45a1f4e944945761de5b80b53cefb6aa1b93946163e208.svg @@ -809,23 +809,14 @@

Sampling
NUTS: [mu_volatility, sigma_volatility, volatility, mu_temperature, sigma_temperature, inverse_temperature]
 
-

-

-
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 22 seconds.
-
-
-
There were 1000 divergences after tuning. Increase `target_accept` or reparameterize.
+

+

+
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 38 seconds.
 
We recommend running at least 4 chains for robust computation of convergence diagnostics
 
-
The rhat statistic is larger than 1.01 for some parameters. This indicates problems during sampling. See https://arxiv.org/abs/1903.08008 for details
-
-
-
The effective sample size per chain is smaller than 100 for some parameters.  A higher number is needed for reliable rhat and ess computation. See https://arxiv.org/abs/1903.08008 for details
-
-

The reference values on both posterior distributions indicate the mean of the distribution used for simulation.

@@ -879,17 +870,17 @@

Model comparison
Computed from 2000 posterior samples and 3200 observations log-likelihood matrix.
 
          Estimate       SE
-elpd_loo -2192.92    57.20
-p_loo      441.86        -
+elpd_loo -1684.28    25.60
+p_loo       18.03        -
 
 There has been a warning during the calculation. Please check the results.
 ------
 
 Pareto k diagnostic values:
                          Count   Pct.
-(-Inf, 0.70]   (good)     2097   65.5%
+(-Inf, 0.70]   (good)     3186   99.6%
    (0.70, 1]   (bad)         0    0.0%
-   (1, Inf)   (very bad) 1103   34.5%
+   (1, Inf)   (very bad)   14    0.4%
 
@@ -912,19 +903,19 @@

System configuration diff --git a/dev/notebooks/4-Parameter_recovery.html b/dev/notebooks/4-Parameter_recovery.html index 79e31c7a9..1e5ad074a 100644 --- a/dev/notebooks/4-Parameter_recovery.html +++ b/dev/notebooks/4-Parameter_recovery.html @@ -8,7 +8,7 @@ - Recovering computational parameters from observed behaviours — pyhgf 0.0.0.post1.dev0+dbad150 documentation + Recovering computational parameters from observed behaviours — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + @@ -53,7 +53,7 @@ - + @@ -653,12 +653,12 @@

Inference from the simulated behaviours
NUTS: [censored_volatility, inverse_temperature]
 
-

-

-
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 54 seconds.
+

+

+
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 66 seconds.
 
-
diff --git a/dev/notebooks/Example_1_Heart_rate_variability.html b/dev/notebooks/Example_1_Heart_rate_variability.html index f3810a8ad..68076f3c7 100644 --- a/dev/notebooks/Example_1_Heart_rate_variability.html +++ b/dev/notebooks/Example_1_Heart_rate_variability.html @@ -8,7 +8,7 @@ - Example 1: Bayesian filtering of cardiac volatility — pyhgf 0.0.0.post1.dev0+dbad150 documentation + Example 1: Bayesian filtering of cardiac volatility — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + @@ -53,7 +53,7 @@ - + @@ -554,16 +554,16 @@

Loading and preprocessing physiological recording
Downloading ECG channel:   0%|          | 0/2 [00:00<?, ?it/s]
 

-
Downloading ECG channel:  50%|█████     | 1/2 [00:00<00:00,  1.10it/s]
+
Downloading ECG channel:  50%|█████     | 1/2 [00:00<00:00,  2.33it/s]
 
-
Downloading Respiration channel:  50%|█████     | 1/2 [00:00<00:00,  1.10it/s]
+
Downloading Respiration channel:  50%|█████     | 1/2 [00:00<00:00,  2.33it/s]
 
-
Downloading Respiration channel: 100%|██████████| 2/2 [00:01<00:00,  1.38it/s]
+
Downloading Respiration channel: 100%|██████████| 2/2 [00:01<00:00,  1.73it/s]
 
-
@@ -727,17 +727,17 @@

System configuration - Example 2: Estimating the mean and precision of a time-varying Gaussian distributions — pyhgf 0.0.0.post1.dev0+dbad150 documentation + Example 2: Estimating the mean and precision of a time-varying Gaussian distributions — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + @@ -680,15 +680,15 @@

System configuration - Example 3: A multi-armed bandit task with independent rewards and punishments — pyhgf 0.0.0.post1.dev0+dbad150 documentation + Example 3: A multi-armed bandit task with independent rewards and punishments — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + @@ -55,7 +55,7 @@ - + @@ -1082,8 +1082,8 @@

Bayesian inference
NUTS: [omega]
 

-

-
@@ -1123,20 +1123,20 @@

System configuration

diff --git a/dev/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.html b/dev/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.html index 276e1d613..4f8bf1749 100644 --- a/dev/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.html +++ b/dev/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.html @@ -8,7 +8,7 @@ - Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter — pyhgf 0.0.0.post1.dev0+dbad150 documentation + Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + @@ -1020,17 +1020,17 @@

System configuration

diff --git a/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html b/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html index e44a8a32a..eea9ab558 100644 --- a/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html +++ b/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html @@ -8,7 +8,7 @@ - Zurich CPC II: Application to reinforcement learning — pyhgf 0.0.0.post1.dev0+dbad150 documentation + Zurich CPC II: Application to reinforcement learning — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + @@ -55,7 +55,7 @@ - + @@ -703,8 +703,8 @@

Parameters optimization
NUTS: [tonic_volatility_2]
 

-

-
-../_images/d025a83a74bb822d57b494b8dce43fc5434adc23686211605e9bc3b6b3c35a06.png +../_images/585371845e3e43380a5d687c919d467a61b90a049990119425e75fe4135cb55a.png
-

-

Assess model fitting, here using leave-one-out cross-validation from the Arviz library.

@@ -896,7 +896,7 @@

Rescorla-Wagner{"version_major": 2, "version_minor": 0, "model_id": "1c9c532314cb4e619d3af6d3e24dad8b"} @@ -1004,8 +1004,8 @@

Two-level HGF
NUTS: [tonic_volatility_2]
 

-

-

We have saved the pointwise log probabilities as a variable, here we simply move this variable to the log_likelihoo field of the idata object, so Arviz knows that this can be used later for model comparison.

@@ -1112,12 +1112,12 @@

Three-level HGF
NUTS: [tonic_volatility_2]
 
-

-

The resulting samples show belief trajectories for 10 samples for each model (we are not depicting the biased random here for clarity). The trajectories are highly similar, but we can see that the two and three-level HGF are slightly adjusting their learning rates in a way that was more consistent with the observed behaviours.

@@ -1447,19 +1447,19 @@

System configuration diff --git a/dev/py-modindex.html b/dev/py-modindex.html index b5e0f0af2..698d32116 100644 --- a/dev/py-modindex.html +++ b/dev/py-modindex.html @@ -7,7 +7,7 @@ - Python Module Index — pyhgf 0.0.0.post1.dev0+dbad150 documentation + Python Module Index — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -42,7 +42,7 @@ - + diff --git a/dev/references.html b/dev/references.html index 1b05bceb4..f0eab2fd5 100644 --- a/dev/references.html +++ b/dev/references.html @@ -8,7 +8,7 @@ - References — pyhgf 0.0.0.post1.dev0+dbad150 documentation + References — pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -43,7 +43,7 @@ - + diff --git a/dev/search.html b/dev/search.html index bb7dd5616..af74762f2 100644 --- a/dev/search.html +++ b/dev/search.html @@ -6,7 +6,7 @@ - Search - pyhgf 0.0.0.post1.dev0+dbad150 documentation + Search - pyhgf 0.0.0.post1.dev0+c65e161 documentation @@ -41,7 +41,7 @@ - + diff --git a/dev/searchindex.js b/dev/searchindex.js index 4740b52df..aa137e835 100644 --- a/dev/searchindex.js +++ b/dev/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"": [[84, "exercise1.1"], [84, "exercise1.2"], [84, "exercise1.3"], [84, "exercise1.4"], [84, "exercise1.5"], [84, "exercise1.6"], [85, "exercise2.1"], [85, "exercise2.2"]], "API": [[0, "api"]], "Acknowledgments": [[69, "acknowledgments"]], "Add data": [[74, "add-data"], [74, "id4"], [76, "add-data"], [76, "id3"]], "Adding a drift to the random walk": [[71, "adding-a-drift-to-the-random-walk"]], "Autoregressive processes": [[71, "autoregressive-processes"]], "Bayesian inference": [[83, "bayesian-inference"]], "Beliefs trajectories": [[85, "beliefs-trajectories"]], "Biased random": [[85, "biased-random"]], "Binary nodes": [[0, "binary-nodes"]], "Binary state nodes": [[0, "binary-state-nodes"]], "Categorical nodes": [[0, "categorical-nodes"]], "Categorical state nodes": [[0, "categorical-state-nodes"]], "Continuous nodes": [[0, "continuous-nodes"], [0, "id1"]], "Continuous state nodes": [[0, "continuous-state-nodes"]], "Continuous value coupling": [[72, "continuous-value-coupling"]], "Continuous volatility coupling": [[72, "continuous-volatility-coupling"]], "Coupling with binary nodes": [[72, "coupling-with-binary-nodes"]], "Create the model": [[74, "create-the-model"], [74, "id3"], [76, "create-the-model"], [76, "id2"]], "Creating a new response function": [[77, "creating-a-new-response-function"]], "Creating a new response function: the binary surprise": [[77, "creating-a-new-response-function-the-binary-surprise"]], "Creating and manipulating networks of probabilistic nodes": [[72, null]], "Creating custom update functions": [[72, "creating-custom-update-functions"]], "Creating custom update sequences": [[72, "creating-custom-update-sequences"]], "Creating probabilistic nodes": [[72, "creating-probabilistic-nodes"]], "Creating the decision rule": [[77, "creating-the-decision-rule"]], "Creating the model": [[74, "creating-the-model"], [74, "id7"], [76, "creating-the-model"], [76, "id5"]], "Creating the probabilistic network": [[75, "creating-the-probabilistic-network"]], "Decision rule": [[83, "decision-rule"]], "Dirichlet processes": [[0, "dirichlet-processes"]], "Dirichlet state nodes": [[0, "dirichlet-state-nodes"]], "Distribution": [[0, "distribution"]], "Dynamic assignation of update sequences": [[72, "dynamic-assignation-of-update-sequences"]], "Dynamic beliefs updating": [[71, "dynamic-beliefs-updating"]], "Example 1: Bayesian filtering of cardiac volatility": [[81, null]], "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions": [[82, null]], "Example 3: A multi-armed bandit task with independent rewards and punishments": [[83, null]], "Exercises": [[70, "exercises"]], "Exponential family": [[0, "exponential-family"], [0, "id2"]], "Filtering the Sufficient Statistics of a Non-Stationary Distribution": [[73, "filtering-the-sufficient-statistics-of-a-non-stationary-distribution"]], "Filtering the Sufficient Statistics of a Stationary Distribution": [[73, "filtering-the-sufficient-statistics-of-a-stationary-distribution"]], "Fitting behaviours to different RL models": [[85, "fitting-behaviours-to-different-rl-models"]], "Fitting the binary HGF with fixed parameters": [[74, "fitting-the-binary-hgf-with-fixed-parameters"]], "Fitting the continuous HGF with fixed parameters": [[76, "fitting-the-continuous-hgf-with-fixed-parameters"]], "Fitting the model forwards": [[75, "fitting-the-model-forwards"]], "Frequency tracking": [[80, "frequency-tracking"]], "Gaussian Random Walks": [[71, "gaussian-random-walks"], [84, "gaussian-random-walks"]], "Gaussian distribution": [[73, "gaussian-distribution"]], "Generalised Bayesian Filtering of exponential family distributions": [[73, null]], "Generalised Bayesian Filtering: using a fixed \\nu": [[73, "generalised-bayesian-filtering-using-a-fixed-nu"], [73, "id3"]], "Getting started": [[69, "getting-started"]], "Glossary": [[71, "glossary"], [77, "glossary"]], "Group-level inference": [[78, "group-level-inference"]], "Hierarchical Bayesian modelling with probabilistic neural networks": [[78, null]], "How does it work?": [[69, "how-does-it-work"]], "How to cite?": [[1, null]], "Imports": [[74, "imports"]], "Inference from the simulated behaviours": [[79, "inference-from-the-simulated-behaviours"]], "Inference using MCMC sampling": [[75, "inference-using-mcmc-sampling"]], "Installation": [[69, "installation"]], "Introduction to the Generalised Hierarchical Gaussian Filter": [[71, null]], "Kown mean, unknown precision": [[82, "kown-mean-unknown-precision"]], "Learn": [[70, null]], "Learning parameters with MCMC sampling": [[74, "learning-parameters-with-mcmc-sampling"], [76, "learning-parameters-with-mcmc-sampling"]], "Loading and preprocessing physiological recording": [[81, "loading-and-preprocessing-physiological-recording"]], "Math": [[0, "math"]], "Model": [[0, "model"], [81, "model"]], "Model comparison": [[78, "model-comparison"], [85, "model-comparison"]], "Model fitting": [[69, "model-fitting"]], "Model inversion: the generalized Hierarchical Gaussian Filter": [[84, "model-inversion-the-generalized-hierarchical-gaussian-filter"]], "Modifying the attributes": [[72, "modifying-the-attributes"]], "Modifying the edges": [[72, "modifying-the-edges"]], "Multivariate Gaussian distribution": [[73, "multivariate-gaussian-distribution"]], "Multivariate coupling": [[72, "multivariate-coupling"]], "Non-linear predictions": [[80, "non-linear-predictions"]], "Non-linear value coupling between continuous state nodes": [[80, null]], "Parameter recovery": [[83, "parameter-recovery"]], "Parameters optimization": [[85, "parameters-optimization"]], "Plot correlation": [[76, "plot-correlation"]], "Plot the computational graph": [[78, "plot-the-computational-graph"]], "Plot the signal with instantaneous heart rate derivations": [[81, "plot-the-signal-with-instantaneous-heart-rate-derivations"]], "Plot trajectories": [[74, "plot-trajectories"], [74, "id5"], [76, "plot-trajectories"], [76, "id4"]], "Plots": [[0, "plots"]], "Posterior predictive sampling": [[85, "posterior-predictive-sampling"]], "Posterior updates": [[0, "posterior-updates"]], "Practice: Filtering the worlds weather": [[84, "practice-filtering-the-worlds-weather"]], "Prediction error steps": [[0, "prediction-error-steps"]], "Prediction steps": [[0, "prediction-steps"]], "Preprocessing": [[81, "preprocessing"]], "Probabilistic coupling between nodes": [[84, "probabilistic-coupling-between-nodes"]], "PyHGF: A Neural Network Library for Predictive Coding": [[69, null]], "ReLU (rectified linear unit) activation function": [[80, "relu-rectified-linear-unit-activation-function"]], "Real-time decision and belief updating": [[83, "real-time-decision-and-belief-updating"]], "Recovering HGF parameters from the observed behaviors": [[77, "recovering-hgf-parameters-from-the-observed-behaviors"]], "Recovering computational parameters from observed behaviours": [[79, null]], "References": [[69, "references"], [86, null]], "Rescorla-Wagner": [[85, "rescorla-wagner"]], "Response": [[0, "response"]], "Sampling": [[74, "sampling"], [74, "id9"], [76, "sampling"], [76, "id7"], [78, "sampling"]], "Simulate a dataset": [[78, "simulate-a-dataset"], [83, "simulate-a-dataset"]], "Simulate behaviours from a one-armed bandit task": [[79, "simulate-behaviours-from-a-one-armed-bandit-task"]], "Simulate responses from a participant": [[83, "simulate-responses-from-a-participant"]], "Simulating a dataset": [[75, "simulating-a-dataset"]], "Solution to Exercise 1": [[84, "solution-exercise1.1"]], "Solution to Exercise 2": [[84, "solution-exercise1.2"]], "Solution to Exercise 3": [[84, "solution-exercise1.3"]], "Solution to Exercise 4": [[84, "solution-exercise1.4"]], "Solution to Exercise 5": [[84, "solution-exercise1.5"]], "Solution to Exercise 7": [[85, "solution-exercise2.1"]], "Solution to Exercise 8": [[85, "solution-exercise2.2"]], "Solutions": [[84, "solutions"], [85, "solutions"]], "Static assignation of update sequences": [[72, "static-assignation-of-update-sequences"]], "Surprise": [[74, "surprise"], [74, "id6"], [76, "surprise"]], "System configuration": [[71, "system-configuration"], [72, "system-configuration"], [73, "system-configuration"], [74, "system-configuration"], [75, "system-configuration"], [76, "system-configuration"], [77, "system-configuration"], [78, "system-configuration"], [79, "system-configuration"], [80, "system-configuration"], [81, "system-configuration"], [82, "system-configuration"], [83, "system-configuration"], [84, "system-configuration"], [85, "system-configuration"]], "Table of Contents": [[0, null]], "Task structure": [[83, "task-structure"]], "The Generalized Hierarchical Gaussian Filter": [[69, "the-generalized-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter": [[70, "the-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter in a network of predictive nodes": [[71, "the-hierarchical-gaussian-filter-in-a-network-of-predictive-nodes"]], "The binary HGF": [[85, "the-binary-hgf"]], "The binary Hierarchical Gaussian Filter": [[74, null]], "The case of multivariate ascendency": [[72, "the-case-of-multivariate-ascendency"]], "The case of multivariate descendency": [[72, "the-case-of-multivariate-descendency"]], "The categorical Hierarchical Gaussian Filter": [[75, null]], "The categorical state node": [[75, "the-categorical-state-node"]], "The categorical state-transition node": [[75, "the-categorical-state-transition-node"]], "The continuous Hierarchical Gaussian Filter": [[76, null]], "The generative model": [[71, "the-generative-model"], [84, "the-generative-model"]], "The propagation of prediction and prediction errors": [[71, "the-propagation-of-prediction-and-prediction-errors"]], "The three-level binary Hierarchical Gaussian Filter": [[74, "the-three-level-binary-hierarchical-gaussian-filter"]], "The three-level continuous Hierarchical Gaussian Filter": [[76, "the-three-level-continuous-hierarchical-gaussian-filter"]], "The two-level binary Hierarchical Gaussian Filter": [[74, "the-two-level-binary-hierarchical-gaussian-filter"]], "The two-level continuous Hierarchical Gaussian Filter": [[76, "the-two-level-continuous-hierarchical-gaussian-filter"]], "Theory": [[70, "theory"], [73, "theory"]], "Theory and implementation details": [[72, "theory-and-implementation-details"]], "Three-level HGF": [[85, "three-level-hgf"]], "Three-level model": [[74, "three-level-model"], [76, "three-level-model"]], "Time-varying update sequences": [[72, "time-varying-update-sequences"]], "Tutorials": [[70, "tutorials"]], "Two-level HGF": [[85, "two-level-hgf"]], "Two-level model": [[74, "two-level-model"], [76, "two-level-model"]], "Unkown mean, known precision": [[82, "unkown-mean-known-precision"]], "Unkown mean, unknown precision": [[82, "unkown-mean-unknown-precision"]], "Update functions": [[72, "update-functions"]], "Updates functions": [[0, "updates-functions"]], "Use cases": [[70, "use-cases"]], "Using a dynamically adapted \\nu through a collection of Hierarchical Gaussian Filters": [[73, "using-a-dynamically-adapted-nu-through-a-collection-of-hierarchical-gaussian-filters"], [73, "id4"]], "Using custom response models": [[77, null]], "Using the learned parameters": [[74, "using-the-learned-parameters"], [74, "id10"], [76, "using-the-learned-parameters"], [76, "id8"]], "Utils": [[0, "utils"]], "Value coupling": [[71, "value-coupling"], [72, "value-coupling"], [84, "value-coupling"]], "Visualization of the posterior distributions": [[78, "visualization-of-the-posterior-distributions"]], "Visualizing parameters recovery": [[79, "visualizing-parameters-recovery"]], "Visualizing probabilistic networks": [[72, "visualizing-probabilistic-networks"]], "Visualizing the model": [[74, "visualizing-the-model"], [74, "id8"], [76, "visualizing-the-model"], [76, "id6"]], "Volatility coupling": [[71, "volatility-coupling"], [72, "volatility-coupling"], [84, "volatility-coupling"]], "Where to go next?": [[85, "where-to-go-next"]], "Working with missing or unobserved input sequences": [[72, "working-with-missing-or-unobserved-input-sequences"]], "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter": [[84, null]], "Zurich CPC II: Application to reinforcement learning": [[85, null]], "pyhgf.distribution.HGFDistribution": [[2, null]], "pyhgf.distribution.HGFLogpGradOp": [[3, null]], "pyhgf.distribution.HGFPointwise": [[4, null]], "pyhgf.distribution.hgf_logp": [[5, null]], "pyhgf.distribution.logp": [[6, null]], "pyhgf.math.MultivariateNormal": [[7, null]], "pyhgf.math.Normal": [[8, null]], "pyhgf.math.binary_surprise": [[9, null]], "pyhgf.math.binary_surprise_finite_precision": [[10, null]], "pyhgf.math.dirichlet_kullback_leibler": [[11, null]], "pyhgf.math.gaussian_density": [[12, null]], "pyhgf.math.gaussian_predictive_distribution": [[13, null]], "pyhgf.math.gaussian_surprise": [[14, null]], "pyhgf.math.sigmoid": [[15, null]], "pyhgf.model.HGF": [[16, null]], "pyhgf.model.Network": [[17, null]], "pyhgf.model.add_binary_state": [[18, null]], "pyhgf.model.add_categorical_state": [[19, null]], "pyhgf.model.add_continuous_state": [[20, null]], "pyhgf.model.add_dp_state": [[21, null]], "pyhgf.model.add_ef_state": [[22, null]], "pyhgf.model.get_couplings": [[23, null]], "pyhgf.model.insert_nodes": [[24, null]], "pyhgf.model.update_parameters": [[25, null]], "pyhgf.plots.plot_correlations": [[26, null]], "pyhgf.plots.plot_network": [[27, null]], "pyhgf.plots.plot_nodes": [[28, null]], "pyhgf.plots.plot_trajectories": [[29, null]], "pyhgf.response.binary_softmax": [[30, null]], "pyhgf.response.binary_softmax_inverse_temperature": [[31, null]], "pyhgf.response.first_level_binary_surprise": [[32, null]], "pyhgf.response.first_level_gaussian_surprise": [[33, null]], "pyhgf.response.total_gaussian_surprise": [[34, null]], "pyhgf.updates.posterior.categorical.categorical_state_update": [[35, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update": [[36, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf": [[37, null]], "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node": [[38, null]], "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node": [[39, null]], "pyhgf.updates.posterior.exponential.posterior_update_exponential_family_dynamic": [[40, null]], "pyhgf.updates.prediction.binary.binary_state_node_prediction": [[41, null]], "pyhgf.updates.prediction.continuous.continuous_node_prediction": [[42, null]], "pyhgf.updates.prediction.continuous.predict_mean": [[43, null]], "pyhgf.updates.prediction.continuous.predict_precision": [[44, null]], "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction": [[45, null]], "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error": [[46, null]], "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error": [[47, null]], "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error": [[48, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error": [[49, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error": [[50, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error": [[51, null]], "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood": [[52, null]], "pyhgf.updates.prediction_error.dirichlet.create_cluster": [[53, null]], "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error": [[54, null]], "pyhgf.updates.prediction_error.dirichlet.get_candidate": [[55, null]], "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal": [[56, null]], "pyhgf.updates.prediction_error.dirichlet.update_cluster": [[57, null]], "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_dynamic": [[58, null]], "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_fixed": [[59, null]], "pyhgf.utils.add_edges": [[60, null]], "pyhgf.utils.add_parent": [[61, null]], "pyhgf.utils.beliefs_propagation": [[62, null]], "pyhgf.utils.fill_categorical_state_node": [[63, null]], "pyhgf.utils.get_input_idxs": [[64, null]], "pyhgf.utils.get_update_sequence": [[65, null]], "pyhgf.utils.list_branches": [[66, null]], "pyhgf.utils.remove_node": [[67, null]], "pyhgf.utils.to_pandas": [[68, null]]}, "docnames": ["api", "cite", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp", "generated/pyhgf.distribution/pyhgf.distribution.logp", "generated/pyhgf.math/pyhgf.math.MultivariateNormal", "generated/pyhgf.math/pyhgf.math.Normal", "generated/pyhgf.math/pyhgf.math.binary_surprise", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler", "generated/pyhgf.math/pyhgf.math.gaussian_density", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution", "generated/pyhgf.math/pyhgf.math.gaussian_surprise", "generated/pyhgf.math/pyhgf.math.sigmoid", "generated/pyhgf.model/pyhgf.model.HGF", "generated/pyhgf.model/pyhgf.model.Network", "generated/pyhgf.model/pyhgf.model.add_binary_state", "generated/pyhgf.model/pyhgf.model.add_categorical_state", "generated/pyhgf.model/pyhgf.model.add_continuous_state", "generated/pyhgf.model/pyhgf.model.add_dp_state", "generated/pyhgf.model/pyhgf.model.add_ef_state", "generated/pyhgf.model/pyhgf.model.get_couplings", "generated/pyhgf.model/pyhgf.model.insert_nodes", "generated/pyhgf.model/pyhgf.model.update_parameters", "generated/pyhgf.plots/pyhgf.plots.plot_correlations", "generated/pyhgf.plots/pyhgf.plots.plot_network", "generated/pyhgf.plots/pyhgf.plots.plot_nodes", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories", "generated/pyhgf.response/pyhgf.response.binary_softmax", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family_dynamic", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster", "generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_dynamic", "generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_fixed", "generated/pyhgf.utils/pyhgf.utils.add_edges", "generated/pyhgf.utils/pyhgf.utils.add_parent", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence", "generated/pyhgf.utils/pyhgf.utils.list_branches", "generated/pyhgf.utils/pyhgf.utils.remove_node", "generated/pyhgf.utils/pyhgf.utils.to_pandas", "index", "learn", "notebooks/0.1-Theory", "notebooks/0.2-Creating_networks", "notebooks/0.3-Generalised_filtering", "notebooks/1.1-Binary_HGF", "notebooks/1.2-Categorical_HGF", "notebooks/1.3-Continuous_HGF", "notebooks/2-Using_custom_response_functions", "notebooks/3-Multilevel_HGF", "notebooks/4-Parameter_recovery", "notebooks/5-Non_linear_value_coupling", "notebooks/Example_1_Heart_rate_variability", "notebooks/Example_2_Input_node_volatility_coupling", "notebooks/Example_3_Multi_armed_bandit", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter", "notebooks/Exercise_2_Bayesian_reinforcement_learning", "references"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["api.rst", "cite.md", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.rst", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.rst", "generated/pyhgf.distribution/pyhgf.distribution.logp.rst", "generated/pyhgf.math/pyhgf.math.MultivariateNormal.rst", "generated/pyhgf.math/pyhgf.math.Normal.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.rst", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.rst", "generated/pyhgf.math/pyhgf.math.gaussian_density.rst", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.rst", "generated/pyhgf.math/pyhgf.math.gaussian_surprise.rst", "generated/pyhgf.math/pyhgf.math.sigmoid.rst", "generated/pyhgf.model/pyhgf.model.HGF.rst", "generated/pyhgf.model/pyhgf.model.Network.rst", "generated/pyhgf.model/pyhgf.model.add_binary_state.rst", "generated/pyhgf.model/pyhgf.model.add_categorical_state.rst", "generated/pyhgf.model/pyhgf.model.add_continuous_state.rst", "generated/pyhgf.model/pyhgf.model.add_dp_state.rst", "generated/pyhgf.model/pyhgf.model.add_ef_state.rst", "generated/pyhgf.model/pyhgf.model.get_couplings.rst", "generated/pyhgf.model/pyhgf.model.insert_nodes.rst", "generated/pyhgf.model/pyhgf.model.update_parameters.rst", "generated/pyhgf.plots/pyhgf.plots.plot_correlations.rst", "generated/pyhgf.plots/pyhgf.plots.plot_network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_nodes.rst", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.rst", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.rst", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.rst", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.rst", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family_dynamic.rst", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.rst", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.rst", "generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_dynamic.rst", "generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_fixed.rst", "generated/pyhgf.utils/pyhgf.utils.add_edges.rst", "generated/pyhgf.utils/pyhgf.utils.add_parent.rst", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.rst", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.rst", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs.rst", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence.rst", "generated/pyhgf.utils/pyhgf.utils.list_branches.rst", "generated/pyhgf.utils/pyhgf.utils.remove_node.rst", "generated/pyhgf.utils/pyhgf.utils.to_pandas.rst", "index.md", "learn.md", "notebooks/0.1-Theory.ipynb", "notebooks/0.2-Creating_networks.ipynb", "notebooks/0.3-Generalised_filtering.ipynb", "notebooks/1.1-Binary_HGF.ipynb", "notebooks/1.2-Categorical_HGF.ipynb", "notebooks/1.3-Continuous_HGF.ipynb", "notebooks/2-Using_custom_response_functions.ipynb", "notebooks/3-Multilevel_HGF.ipynb", "notebooks/4-Parameter_recovery.ipynb", "notebooks/5-Non_linear_value_coupling.ipynb", "notebooks/Example_1_Heart_rate_variability.ipynb", "notebooks/Example_2_Input_node_volatility_coupling.ipynb", "notebooks/Example_3_Multi_armed_bandit.ipynb", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.ipynb", "notebooks/Exercise_2_Bayesian_reinforcement_learning.ipynb", "references.md"], "indexentries": {"__init__() (pyhgf.distribution.hgfdistribution method)": [[2, "pyhgf.distribution.HGFDistribution.__init__", false]], "__init__() (pyhgf.distribution.hgflogpgradop method)": [[3, "pyhgf.distribution.HGFLogpGradOp.__init__", false]], "__init__() (pyhgf.distribution.hgfpointwise method)": [[4, "pyhgf.distribution.HGFPointwise.__init__", false]], "__init__() (pyhgf.math.multivariatenormal method)": [[7, "pyhgf.math.MultivariateNormal.__init__", false]], "__init__() (pyhgf.math.normal method)": [[8, "pyhgf.math.Normal.__init__", false]], "__init__() (pyhgf.model.hgf method)": [[16, "pyhgf.model.HGF.__init__", false]], "__init__() (pyhgf.model.network method)": [[17, "pyhgf.model.Network.__init__", false]], "add_binary_state() (in module pyhgf.model)": [[18, "pyhgf.model.add_binary_state", false]], "add_categorical_state() (in module pyhgf.model)": [[19, "pyhgf.model.add_categorical_state", false]], "add_continuous_state() (in module pyhgf.model)": [[20, "pyhgf.model.add_continuous_state", false]], "add_dp_state() (in module pyhgf.model)": [[21, "pyhgf.model.add_dp_state", false]], "add_edges() (in module pyhgf.utils)": [[60, "pyhgf.utils.add_edges", false]], "add_ef_state() (in module pyhgf.model)": [[22, "pyhgf.model.add_ef_state", false]], "add_parent() (in module pyhgf.utils)": [[61, "pyhgf.utils.add_parent", false]], "beliefs_propagation() (in module pyhgf.utils)": [[62, "pyhgf.utils.beliefs_propagation", false]], "binary_finite_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[46, "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", false]], "binary_softmax() (in module pyhgf.response)": [[30, "pyhgf.response.binary_softmax", false]], "binary_softmax_inverse_temperature() (in module pyhgf.response)": [[31, "pyhgf.response.binary_softmax_inverse_temperature", false]], "binary_state_node_prediction() (in module pyhgf.updates.prediction.binary)": [[41, "pyhgf.updates.prediction.binary.binary_state_node_prediction", false]], "binary_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[47, "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", false]], "binary_surprise() (in module pyhgf.math)": [[9, "pyhgf.math.binary_surprise", false]], "binary_surprise_finite_precision() (in module pyhgf.math)": [[10, "pyhgf.math.binary_surprise_finite_precision", false]], "categorical_state_prediction_error() (in module pyhgf.updates.prediction_error.categorical)": [[48, "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", false]], "categorical_state_update() (in module pyhgf.updates.posterior.categorical)": [[35, "pyhgf.updates.posterior.categorical.categorical_state_update", false]], "clusters_likelihood() (in module pyhgf.updates.prediction_error.dirichlet)": [[52, "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", false]], "continuous_node_posterior_update() (in module pyhgf.updates.posterior.continuous)": [[36, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", false]], "continuous_node_posterior_update_ehgf() (in module pyhgf.updates.posterior.continuous)": [[37, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", false]], "continuous_node_prediction() (in module pyhgf.updates.prediction.continuous)": [[42, "pyhgf.updates.prediction.continuous.continuous_node_prediction", false]], "continuous_node_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[49, "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", false]], "continuous_node_value_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[50, "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", false]], "continuous_node_volatility_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[51, "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", false]], "create_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[53, "pyhgf.updates.prediction_error.dirichlet.create_cluster", false]], "decision rule": [[77, "term-Decision-rule", true]], "dirichlet_kullback_leibler() (in module pyhgf.math)": [[11, "pyhgf.math.dirichlet_kullback_leibler", false]], "dirichlet_node_prediction() (in module pyhgf.updates.prediction.dirichlet)": [[45, "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", false]], "dirichlet_node_prediction_error() (in module pyhgf.updates.prediction_error.dirichlet)": [[54, "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", false]], "fill_categorical_state_node() (in module pyhgf.utils)": [[63, "pyhgf.utils.fill_categorical_state_node", false]], "first_level_binary_surprise() (in module pyhgf.response)": [[32, "pyhgf.response.first_level_binary_surprise", false]], "first_level_gaussian_surprise() (in module pyhgf.response)": [[33, "pyhgf.response.first_level_gaussian_surprise", false]], "gaussian random walk": [[71, "term-Gaussian-Random-Walk", true]], "gaussian_density() (in module pyhgf.math)": [[12, "pyhgf.math.gaussian_density", false]], "gaussian_predictive_distribution() (in module pyhgf.math)": [[13, "pyhgf.math.gaussian_predictive_distribution", false]], "gaussian_surprise() (in module pyhgf.math)": [[14, "pyhgf.math.gaussian_surprise", false]], "get_candidate() (in module pyhgf.updates.prediction_error.dirichlet)": [[55, "pyhgf.updates.prediction_error.dirichlet.get_candidate", false]], "get_couplings() (in module pyhgf.model)": [[23, "pyhgf.model.get_couplings", false]], "get_input_idxs() (in module pyhgf.utils)": [[64, "pyhgf.utils.get_input_idxs", false]], "get_update_sequence() (in module pyhgf.utils)": [[65, "pyhgf.utils.get_update_sequence", false]], "hgf (class in pyhgf.model)": [[16, "pyhgf.model.HGF", false]], "hgf_logp() (in module pyhgf.distribution)": [[5, "pyhgf.distribution.hgf_logp", false]], "hgfdistribution (class in pyhgf.distribution)": [[2, "pyhgf.distribution.HGFDistribution", false]], "hgflogpgradop (class in pyhgf.distribution)": [[3, "pyhgf.distribution.HGFLogpGradOp", false]], "hgfpointwise (class in pyhgf.distribution)": [[4, "pyhgf.distribution.HGFPointwise", false]], "insert_nodes() (in module pyhgf.model)": [[24, "pyhgf.model.insert_nodes", false]], "likely_cluster_proposal() (in module pyhgf.updates.prediction_error.dirichlet)": [[56, "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", false]], "list_branches() (in module pyhgf.utils)": [[66, "pyhgf.utils.list_branches", false]], "logp() (in module pyhgf.distribution)": [[6, "pyhgf.distribution.logp", false]], "module": [[38, "module-pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", false], [39, "module-pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", false]], "multivariatenormal (class in pyhgf.math)": [[7, "pyhgf.math.MultivariateNormal", false]], "network (class in pyhgf.model)": [[17, "pyhgf.model.Network", false]], "node": [[71, "term-Node", true]], "normal (class in pyhgf.math)": [[8, "pyhgf.math.Normal", false]], "perceptual model": [[77, "term-Perceptual-model", true]], "plot_correlations() (in module pyhgf.plots)": [[26, "pyhgf.plots.plot_correlations", false]], "plot_network() (in module pyhgf.plots)": [[27, "pyhgf.plots.plot_network", false]], "plot_nodes() (in module pyhgf.plots)": [[28, "pyhgf.plots.plot_nodes", false]], "plot_trajectories() (in module pyhgf.plots)": [[29, "pyhgf.plots.plot_trajectories", false]], "posterior_update_exponential_family_dynamic() (in module pyhgf.updates.posterior.exponential)": [[40, "pyhgf.updates.posterior.exponential.posterior_update_exponential_family_dynamic", false]], "predict_mean() (in module pyhgf.updates.prediction.continuous)": [[43, "pyhgf.updates.prediction.continuous.predict_mean", false]], "predict_precision() (in module pyhgf.updates.prediction.continuous)": [[44, "pyhgf.updates.prediction.continuous.predict_precision", false]], "prediction": [[71, "term-Prediction", true]], "prediction error": [[71, "term-Prediction-error", true]], "prediction_error_update_exponential_family_dynamic() (in module pyhgf.updates.prediction_error.exponential)": [[58, "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_dynamic", false]], "prediction_error_update_exponential_family_fixed() (in module pyhgf.updates.prediction_error.exponential)": [[59, "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_fixed", false]], "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node": [[38, "module-pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", false]], "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node": [[39, "module-pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", false]], "remove_node() (in module pyhgf.utils)": [[67, "pyhgf.utils.remove_node", false]], "response function": [[77, "term-Response-function", true]], "response model": [[77, "term-Response-model", true]], "sigmoid() (in module pyhgf.math)": [[15, "pyhgf.math.sigmoid", false]], "to_pandas() (in module pyhgf.utils)": [[68, "pyhgf.utils.to_pandas", false]], "total_gaussian_surprise() (in module pyhgf.response)": [[34, "pyhgf.response.total_gaussian_surprise", false]], "update": [[71, "term-Update", true]], "update_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[57, "pyhgf.updates.prediction_error.dirichlet.update_cluster", false]], "update_parameters() (in module pyhgf.model)": [[25, "pyhgf.model.update_parameters", false]], "vape": [[71, "term-VAPE", true]], "vope": [[71, "term-VOPE", true]]}, "objects": {"pyhgf.distribution": [[2, 0, 1, "", "HGFDistribution"], [3, 0, 1, "", "HGFLogpGradOp"], [4, 0, 1, "", "HGFPointwise"], [5, 2, 1, "", "hgf_logp"], [6, 2, 1, "", "logp"]], "pyhgf.distribution.HGFDistribution": [[2, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFLogpGradOp": [[3, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFPointwise": [[4, 1, 1, "", "__init__"]], "pyhgf.math": [[7, 0, 1, "", "MultivariateNormal"], [8, 0, 1, "", "Normal"], [9, 2, 1, "", "binary_surprise"], [10, 2, 1, "", "binary_surprise_finite_precision"], [11, 2, 1, "", "dirichlet_kullback_leibler"], [12, 2, 1, "", "gaussian_density"], [13, 2, 1, "", "gaussian_predictive_distribution"], [14, 2, 1, "", "gaussian_surprise"], [15, 2, 1, "", "sigmoid"]], "pyhgf.math.MultivariateNormal": [[7, 1, 1, "", "__init__"]], "pyhgf.math.Normal": [[8, 1, 1, "", "__init__"]], "pyhgf.model": [[16, 0, 1, "", "HGF"], [17, 0, 1, "", "Network"], [18, 2, 1, "", "add_binary_state"], [19, 2, 1, "", "add_categorical_state"], [20, 2, 1, "", "add_continuous_state"], [21, 2, 1, "", "add_dp_state"], [22, 2, 1, "", "add_ef_state"], [23, 2, 1, "", "get_couplings"], [24, 2, 1, "", "insert_nodes"], [25, 2, 1, "", "update_parameters"]], "pyhgf.model.HGF": [[16, 1, 1, "", "__init__"]], "pyhgf.model.Network": [[17, 1, 1, "", "__init__"]], "pyhgf.plots": [[26, 2, 1, "", "plot_correlations"], [27, 2, 1, "", "plot_network"], [28, 2, 1, "", "plot_nodes"], [29, 2, 1, "", "plot_trajectories"]], "pyhgf.response": [[30, 2, 1, "", "binary_softmax"], [31, 2, 1, "", "binary_softmax_inverse_temperature"], [32, 2, 1, "", "first_level_binary_surprise"], [33, 2, 1, "", "first_level_gaussian_surprise"], [34, 2, 1, "", "total_gaussian_surprise"]], "pyhgf.updates.posterior.categorical": [[35, 2, 1, "", "categorical_state_update"]], "pyhgf.updates.posterior.continuous": [[36, 2, 1, "", "continuous_node_posterior_update"], [37, 2, 1, "", "continuous_node_posterior_update_ehgf"], [38, 3, 0, "-", "posterior_update_mean_continuous_node"], [39, 3, 0, "-", "posterior_update_precision_continuous_node"]], "pyhgf.updates.posterior.exponential": [[40, 2, 1, "", "posterior_update_exponential_family_dynamic"]], "pyhgf.updates.prediction.binary": [[41, 2, 1, "", "binary_state_node_prediction"]], "pyhgf.updates.prediction.continuous": [[42, 2, 1, "", "continuous_node_prediction"], [43, 2, 1, "", "predict_mean"], [44, 2, 1, "", "predict_precision"]], "pyhgf.updates.prediction.dirichlet": [[45, 2, 1, "", "dirichlet_node_prediction"]], "pyhgf.updates.prediction_error.binary": [[46, 2, 1, "", "binary_finite_state_node_prediction_error"], [47, 2, 1, "", "binary_state_node_prediction_error"]], "pyhgf.updates.prediction_error.categorical": [[48, 2, 1, "", "categorical_state_prediction_error"]], "pyhgf.updates.prediction_error.continuous": [[49, 2, 1, "", "continuous_node_prediction_error"], [50, 2, 1, "", "continuous_node_value_prediction_error"], [51, 2, 1, "", "continuous_node_volatility_prediction_error"]], "pyhgf.updates.prediction_error.dirichlet": [[52, 2, 1, "", "clusters_likelihood"], [53, 2, 1, "", "create_cluster"], [54, 2, 1, "", "dirichlet_node_prediction_error"], [55, 2, 1, "", "get_candidate"], [56, 2, 1, "", "likely_cluster_proposal"], [57, 2, 1, "", "update_cluster"]], "pyhgf.updates.prediction_error.exponential": [[58, 2, 1, "", "prediction_error_update_exponential_family_dynamic"], [59, 2, 1, "", "prediction_error_update_exponential_family_fixed"]], "pyhgf.utils": [[60, 2, 1, "", "add_edges"], [61, 2, 1, "", "add_parent"], [62, 2, 1, "", "beliefs_propagation"], [63, 2, 1, "", "fill_categorical_state_node"], [64, 2, 1, "", "get_input_idxs"], [65, 2, 1, "", "get_update_sequence"], [66, 2, 1, "", "list_branches"], [67, 2, 1, "", "remove_node"], [68, 2, 1, "", "to_pandas"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function", "3": "py:module"}, "terms": {"": [1, 2, 17, 18, 19, 20, 22, 28, 29, 32, 33, 34, 43, 60, 61, 62, 65, 69, 71, 72, 73, 74, 76, 77, 79, 80, 81, 83, 84, 85], "0": [0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 28, 29, 30, 31, 43, 56, 60, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "00": [81, 84, 85], "000000": 85, "000000e": 85, "000093": 85, "00039": [1, 69, 86], "00825": [1, 69, 86], "009": 74, "01": [73, 78, 79, 80, 81, 84], "011": 85, "014": 77, "015": 85, "016": 86, "016216": 77, "016860": 85, "018": [77, 84], "0183": 76, "019": 77, "02": [73, 84], "027": 2, "03": [80, 84], "030": [13, 40, 58, 59], "0354": 76, "038": 2, "04": [28, 29, 76, 84], "040514": 85, "05": [72, 80, 83, 85], "051470": 85, "06": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "060": 86, "061": 84, "064361": 77, "065": 2, "067450": 77, "068": 86, "068983": 77, "077038": 77, "08": 86, "08008": [78, 79], "09045": 74, "09206": [1, 69], "1": [1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 28, 29, 30, 31, 36, 37, 40, 41, 42, 43, 44, 46, 49, 50, 51, 54, 58, 59, 60, 62, 65, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 85, 86], "10": [1, 13, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86], "100": [73, 78, 79, 81], "1000": [2, 71, 72, 73, 78, 80, 81, 82, 84], "10000": [16, 71], "1007": [13, 40, 58, 59, 86], "1016": [69, 86], "1017": 86, "102718": 85, "1058": 76, "109": 85, "10937": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 86], "10it": 81, "11": [2, 73, 74, 77, 86], "1103": 78, "1106": 76, "1118": 76, "112": 85, "113": 85, "114": 86, "117590": [69, 86], "12": [2, 28, 29, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "1224": 86, "123": [71, 72, 73, 78, 79, 82, 83, 84, 85], "1239": 86, "124": 84, "125": [71, 84], "1251": 86, "1265": 86, "128": [73, 84], "13": [28, 29, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "138": 69, "14": [2, 73, 77], "1413": 86, "1432": 86, "147": 84, "15": 73, "150": 75, "1500": 72, "16": [2, 73], "160": 83, "1662": 1, "16625161": 1, "17": 75, "173584": 85, "18": [28, 29, 77], "185465": 77, "1903": [78, 79], "1910": 76, "1938": 78, "196": 84, "1994": 79, "1_000": [74, 76, 77, 78, 79, 81, 83, 85], "1d": [2, 4], "1e1": [28, 29, 74, 76, 81, 84], "1e2": 84, "1e4": [16, 28, 29, 72, 74, 76, 77, 81, 82, 84], "1i": [11, 75], "1rst": 74, "2": [1, 2, 3, 4, 5, 6, 11, 13, 14, 16, 17, 28, 29, 36, 37, 51, 54, 62, 65, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 85, 86], "20": [1, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86], "200": [71, 72, 73, 84], "2000": [72, 78], "20000": [55, 56], "2001": 11, "2010": 76, "2011": [1, 69, 71, 72, 76, 86], "2013": 69, "2014": [1, 69, 71, 72, 78, 84, 86], "2016": [78, 84, 86], "2017": [83, 86], "2019": [79, 84, 86], "202": 74, "2020": [13, 40, 58, 59, 69, 73, 86], "2021": [69, 74, 77, 85, 86], "2023": [0, 1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 71, 72, 84, 86], "2024": [1, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "2025": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "203": 74, "205": 77, "206": 74, "2097": 78, "21": 75, "21596": 74, "21629826": 1, "2192": 78, "22": 78, "222": 85, "224": 84, "226": [69, 86], "2305": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 86], "230946": 77, "232118": 85, "232583": 77, "233799": 77, "234603": 77, "235004": 77, "24": 84, "2410": [1, 69], "244": 84, "245": 84, "247": 84, "249": 84, "25": [73, 82], "250": [71, 72, 75, 80, 82, 84], "2516081684": 76, "256": 73, "256168": 85, "258123e": 85, "26": [71, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85], "260191": 77, "2633": 74, "2679": 76, "27": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86], "270900": 77, "27879": 86, "283697": 77, "296556": 77, "2_000": [74, 76, 77, 78, 79, 81, 83, 85], "2_i": 78, "2a2a2a": 75, "2i": [11, 75], "2nd": 74, "3": [2, 3, 4, 5, 13, 16, 17, 28, 29, 40, 58, 59, 62, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 85, 86], "30": [71, 72, 84, 86], "301674": 77, "308": 84, "30963": 76, "31": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "32": 73, "3200": 78, "333": 73, "3389": [1, 69, 86], "33it": 81, "34": 78, "345": 85, "345082": 85, "345825": 85, "35": 73, "350": 80, "35667497": 9, "376662": 85, "387": 84, "388": 85, "389923": 77, "38it": 81, "4": [1, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86], "400": [72, 73, 80], "404792": 85, "405": 85, "4093": 76, "416410": 77, "42": [56, 80], "43": 80, "441": 78, "45": 72, "458906": 77, "466356": 77, "471469": 77, "472": 84, "474077": 77, "48550": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69], "490470e": 85, "49547": 86, "498": 77, "4c72b0": [71, 72, 77, 84, 85], "5": [0, 1, 2, 28, 29, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86], "50": [81, 82, 85], "500": [78, 82], "500000": 77, "506923": 77, "510971": 77, "512": 73, "513953": 85, "5161": 1, "518301": 77, "52": [13, 40, 58, 59, 86], "520583": 77, "53006": 74, "530355": 77, "530717": 77, "53662109": 78, "536678": 77, "5377": 84, "54": [77, 79], "540697": 77, "550": 80, "551": 74, "55585": 74, "55a868": [71, 79, 85], "566859": 77, "57": 78, "58": [13, 40, 58, 59, 86], "582766": [73, 82], "589": 85, "5d1e51": 85, "6": [29, 71, 72, 73, 74, 78, 79, 82, 83, 84, 85, 86], "60": [79, 81], "600": [72, 73, 80], "602961": 77, "612068": 85, "6174": 76, "622459": 77, "624085": 77, "627284": 77, "631975": 77, "635": 84, "638038": 77, "64": [73, 78], "64919": [13, 40, 58, 59], "65": 78, "650": 80, "66": 85, "663539": 85, "674": 85, "680811": 69, "682311": 85, "698": 76, "7": [9, 73, 76, 79, 83, 84, 86], "70": 78, "701": 84, "731660": 77, "745316": 77, "75": 73, "750": 72, "7554": 86, "764594": 85, "766": [2, 77], "776": 2, "7_7": [13, 40, 58, 59], "7f7f7f": 75, "8": [1, 11, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86], "80": 83, "800": [72, 73], "806": 2, "828": 76, "834867": 77, "848": 77, "850": 80, "853144": 85, "86": 78, "865": 84, "87854": 77, "886": 76, "8992462158203": 69, "9": [11, 28, 29, 71, 73, 75, 77, 81, 85, 86], "90": 72, "900": 72, "903": [76, 85], "910": 76, "9189386": 14, "92": 78, "9297": 76, "931": 84, "938": 2, "944": 2, "95": 73, "950": 80, "957": 77, "957005": 85, "964": 76, "965": 76, "968096": 85, "9696": 86, "978": [13, 40, 58, 59], "997": 77, "999": 73, "A": [0, 1, 2, 3, 4, 5, 16, 17, 28, 29, 31, 36, 37, 42, 43, 44, 46, 49, 50, 51, 56, 62, 65, 66, 70, 71, 72, 74, 76, 77, 78, 79, 80, 84, 85, 86], "And": 77, "As": [72, 78, 83], "At": [70, 71, 84], "Being": 77, "But": [72, 73, 76, 77, 78, 84], "By": [2, 3, 4, 37, 43, 69, 76, 77], "For": [1, 6, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 64, 71, 72, 77, 79, 80, 84, 85], "If": [1, 2, 3, 4, 16, 28, 29, 43, 60, 66, 71, 75, 77, 78, 80, 83, 85], "In": [1, 13, 40, 58, 59, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86], "It": [1, 16, 35, 48, 60, 71, 72, 73, 76, 77, 79, 80, 82, 83, 85], "NOT": 85, "OR": 84, "On": 77, "One": [72, 74, 76, 85], "Or": 84, "Such": [71, 85], "That": 85, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 73, 77, 78, 79, 80, 81, 82, 83, 86], "Then": [80, 84], "There": [77, 78, 79, 84, 85], "These": [1, 69, 71, 74], "To": [71, 74, 76, 77, 78, 80, 84, 85], "With": [71, 80], "_": [29, 31, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85], "_1": [77, 78], "__init__": [2, 3, 4, 7, 8, 16, 17], "_a": [41, 43, 44], "_b": 41, "_i": 71, "_j": [50, 51], "a_custom_hgf": 72, "aarhu": [80, 84], "aarhus_weather_df": 84, "ab": [1, 78, 79], "aberr": 76, "abil": 79, "abl": [40, 74, 77, 78, 80], "about": [1, 70, 71, 72, 74, 75, 76, 77, 83, 84, 85], "abov": [66, 71, 72, 73, 76, 77, 80, 83, 84, 85], "absenc": [79, 83], "abstract": [1, 86], "ac": 11, "acceler": 76, "accept": [74, 76, 80], "access": [2, 3, 4, 72, 77], "accommod": 1, "accord": [0, 77, 80], "accordingli": [5, 71, 74, 76, 83, 84], "account": [1, 71, 72, 83], "accumul": 62, "accur": [79, 85], "acetylcholin": 1, "achiev": 73, "across": [29, 34, 71, 73, 74, 76, 83], "act": [74, 76, 77, 78], "action": [69, 77, 78, 85], "actionmodel": 77, "activ": [13, 40, 58, 59, 69, 77, 85, 86], "actual": [69, 72, 75, 83, 85], "acycl": 72, "ad": [73, 74, 75, 76, 80, 82, 83, 84], "adapt": [1, 69, 70, 71, 76, 77, 85], "adapt_diag": [74, 76, 77, 78, 79, 81, 83, 85], "add": [18, 19, 20, 21, 22, 60, 61, 69, 71, 80, 83, 84, 85], "add_group": [78, 85], "add_nod": [2, 3, 4, 69, 72, 73, 75, 76, 80, 82, 83, 84, 85], "add_patch": 73, "addit": [2, 3, 4, 5, 6, 72, 76, 77], "addition": [69, 79, 85], "additional_paramet": [18, 19, 20, 21, 22, 25], "additionn": [30, 31, 32, 33, 34], "adjac": 72, "adjacencylist": [17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 60, 61, 62, 64, 67, 72], "adjust": [67, 69, 85], "adopt": [74, 76], "advanc": 70, "advantag": [71, 72, 73, 85], "aesara": [74, 76], "affect": [5, 6, 16, 76, 83, 86], "after": [0, 17, 28, 35, 36, 37, 40, 46, 62, 73, 74, 78, 79, 84, 85], "afterward": [2, 3, 4, 16], "again": [75, 76], "against": 76, "agent": [1, 69, 70, 72, 73, 74, 76, 77, 78, 79, 81, 83, 84, 85], "agnost": 1, "ai": 1, "aim": 76, "air": 84, "aki": 86, "al": [0, 69, 71, 72, 74, 77, 78, 84, 85], "algorithm": [1, 69, 71, 74, 81, 84], "align": [71, 73, 77], "alin": [1, 86], "all": [0, 1, 2, 5, 16, 29, 32, 40, 60, 64, 65, 66, 73, 74, 76, 77, 78, 79, 80, 81, 83, 84, 85], "alloc": 54, "allow": [1, 69, 72, 73, 74, 76, 77, 80, 83, 84], "alon": 84, "along": [5, 85], "alpha": [72, 73, 75, 77, 79, 80, 82, 83, 84, 85], "alpha_": [11, 75, 80], "alpha_1": 11, "alpha_2": 11, "alreadi": [66, 72, 73, 77, 78], "also": [1, 16, 28, 42, 44, 49, 66, 69, 71, 72, 73, 74, 76, 77, 78, 80, 82, 83, 84, 85], "altern": [62, 65, 72, 76, 77, 83, 85], "alternative\u00e6li": 78, "alwai": [54, 73, 75, 78, 79, 83, 84, 85], "among": 77, "amount": 76, "amplitud": 73, "an": [1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 49, 55, 57, 58, 59, 62, 64, 65, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "analys": [1, 85], "analyt": 1, "andrew": 86, "angl": 73, "ani": [0, 1, 36, 37, 46, 64, 66, 70, 71, 73, 74, 75, 76, 77, 78, 80], "anim": 73, "ann": 86, "anna": [1, 86], "anoth": [58, 71, 75, 76, 80, 82, 84, 85], "another_custom_hgf": 72, "answer": 79, "anymor": [43, 71, 73], "anyth": [71, 75], "api": [69, 74, 75, 76, 77, 78, 79, 81, 83, 85], "apont": 69, "appar": 71, "appear": [72, 80], "append": [28, 71, 73, 78, 79, 83, 84, 85], "appli": [17, 62, 65, 70, 72, 73, 75, 77, 78, 79, 83, 84, 85], "applic": [1, 6, 69, 70, 72, 73, 76, 77, 79], "apply_along_axi": 73, "approach": [71, 73, 74, 75, 78, 79], "appropri": 82, "approxim": [1, 37, 69, 71, 72, 73, 84], "april": [76, 86], "ar": [0, 1, 2, 4, 5, 16, 17, 28, 35, 58, 60, 62, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "ar1": [71, 83], "arang": [72, 73, 75, 77, 80, 83, 85], "arbitrari": [2, 72, 77, 80, 84], "arctan2": 73, "area": [28, 84], "arg": [7, 8, 25, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 54, 58, 59], "argnum": 83, "argument": [2, 3, 4, 72, 74, 76, 77, 80], "arm": [70, 77, 78, 85], "around": [28, 29, 70, 71, 72, 76, 77, 85], "arrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 35, 43, 44, 47, 50, 52, 55, 56, 62, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 84, 85], "arrang": 84, "arriv": 71, "articl": [1, 86], "artifici": [1, 80], "arviz": [2, 74, 76, 77, 78, 79, 81, 83, 85], "arxiv": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 78, 79, 86], "as_tensor_vari": [75, 83, 85], "asarrai": [75, 83], "ask": [1, 76], "aspect": 75, "assert": [72, 74, 76], "assess": [54, 74, 76, 85], "assign": [62, 75, 83], "associ": [2, 3, 4, 5, 6, 65, 69, 75, 77, 78, 79, 80, 83, 85, 86], "assum": [1, 36, 37, 58, 59, 60, 71, 72, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85], "assumpt": [82, 85], "astyp": 80, "atmospher": 84, "attribut": [1, 2, 3, 4, 16, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 57, 58, 59, 60, 61, 62, 67, 69, 73, 75, 78, 79, 82, 83], "au": 80, "august": [76, 86], "author": [1, 80], "auto": 75, "autoconnect": [43, 71, 80], "autoconnection_strength": [80, 82], "autocorrel": 80, "autom": 84, "automat": [72, 74, 76, 78], "autoregress": 43, "avail": [0, 69, 84], "averag": [73, 74, 84, 85], "avoid": 79, "ax": [26, 28, 29, 71, 72, 73, 75, 79, 80, 82, 83, 85], "axi": [5, 71, 73, 78], "axvlin": 83, "az": [2, 74, 75, 76, 77, 78, 79, 81, 83, 85], "b": [41, 43, 69, 73, 80, 83], "back": [43, 71, 78], "backgroud": 28, "backslash": 1, "backward": [72, 73], "bad": 78, "badg": 70, "bandit": [70, 77, 78, 85], "bank": 76, "base": [1, 56, 71, 74, 75, 76, 77, 78, 79, 81, 83, 85], "batch": [5, 83], "bay": 1, "bayesian": [1, 69, 70, 71, 74, 75, 76, 77, 85, 86], "becaus": [71, 72, 74, 75, 76, 80, 83, 84], "becom": [71, 73], "been": [40, 65, 71, 72, 73, 75, 76, 77, 78, 84, 85], "befor": [0, 28, 40, 65, 71, 72, 73, 76, 77, 78, 79, 83, 84], "beforehand": [76, 85], "begin": [9, 13, 70, 71, 73, 77, 80, 85], "behav": [1, 73, 74, 76, 80, 84], "behavior": [1, 85, 86], "behaviour": [5, 6, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83], "behind": [70, 71, 84], "being": [40, 71, 72, 73, 74, 78, 80, 81, 85], "belief": [0, 6, 17, 28, 56, 62, 69, 70, 72, 73, 76, 77, 78, 79, 80, 84], "beliefs_propag": [17, 83], "belong": [66, 73], "below": [0, 71, 74, 75, 77, 80, 84, 85], "bernoulli": [9, 85], "best": [1, 55, 76, 80, 81, 85], "beta": [83, 85], "better": [37, 76, 77, 78, 79, 84, 85], "between": [0, 1, 5, 6, 11, 16, 41, 60, 61, 62, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 83, 85], "beyond": 71, "bia": [78, 85, 86], "biased_random": 85, "biased_random_idata": 85, "biased_random_model": 85, "big": 71, "binari": [2, 3, 4, 5, 6, 9, 10, 16, 18, 29, 30, 31, 32, 35, 48, 63, 69, 70, 71, 75, 76, 78, 79, 83], "binary_hgf": 85, "binary_input_upd": [35, 48], "binary_paramet": [63, 75], "binary_precis": [16, 29, 74], "binary_softmax": [77, 85], "binary_softmax_inverse_temperatur": [69, 78, 79], "binary_states_idx": 63, "binary_surpris": [77, 83], "bind": [69, 72], "binomi": [72, 77, 78, 79, 83], "bio": 1, "biolog": [1, 69], "bit": [76, 78], "bivari": 73, "bivariate_hgf": 73, "bivariate_norm": 73, "bla": [74, 75, 76, 77, 78, 79, 81, 83, 85], "blackjax": 77, "blank": 75, "block": [71, 74, 76, 83], "blog": 75, "blue": [77, 80], "bollmann": 69, "bool": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 28, 29, 30, 31, 52, 55, 56, 62], "bool_": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 52, 55, 56, 62], "boolean": [35, 62, 75, 76, 85], "boom": 86, "both": [1, 43, 70, 71, 72, 75, 77, 78, 80, 82, 83, 84, 85], "bottom": [29, 69, 71, 84], "brain": 1, "branch": [54, 66, 69, 77, 83], "branch_list": 66, "break": 84, "briefli": 85, "broad": 75, "broadcast": [5, 78], "brodersen": [1, 69, 86], "broken": 76, "brown": [83, 86], "bucklei": 86, "build": [70, 71, 74, 76, 80, 84], "built": [69, 72, 74, 76, 84, 85], "burst": 72, "bv": 69, "c": [1, 13, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 69, 74, 75, 76, 77, 78, 79, 81, 83, 85, 86], "c44e52": [71, 73, 77, 79, 85], "ca": 80, "calcul": [73, 78, 80], "call": [0, 35, 71, 74, 76, 77, 78, 83, 84, 85], "callabl": [0, 2, 3, 4, 5, 6, 20, 24, 58, 59, 60, 62, 65, 77], "cambridg": 86, "can": [0, 1, 2, 3, 4, 5, 6, 16, 60, 61, 62, 65, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "candid": [52, 54, 55, 56, 83], "cannot": [16, 72, 73, 83], "capabl": [71, 80], "capitalis": 71, "captur": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "capture_output": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "cardiac": [70, 76], "carlo": [1, 74, 76, 85], "carri": 85, "carryov": 62, "case": [9, 13, 71, 73, 75, 76, 77, 78, 80, 81, 83, 85], "categor": [16, 19, 63, 70, 73, 78, 83], "categori": [10, 73, 75, 83], "categorical_hgf": 75, "categorical_idata": 75, "categorical_surpris": 75, "caus": 37, "cbo9781139087759": 86, "cdot": 80, "cedric": 86, "cell": [71, 76, 84], "censor": 79, "censored_volatil": 79, "centr": [75, 76], "central": [71, 72, 76, 80, 85], "certain": [1, 71, 72], "chain": [1, 2, 74, 75, 76, 77, 78, 79, 81, 83, 84, 85], "cham": 86, "chanc": 83, "chance_conting": 83, "chang": [71, 72, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85], "channel": 81, "chaotic": 83, "check": [76, 78], "chf": [28, 29], "chi": 73, "chi2": 73, "chi2_val": 73, "child": [0, 54, 64, 71, 72, 80, 84], "children": [0, 16, 17, 28, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 60, 64, 65, 66, 69, 71, 72, 80], "children_idx": 60, "children_input": 28, "choic": 72, "cholinerg": [69, 86], "choos": [73, 76, 83], "chose": [31, 54, 73, 77, 83], "chosen": 83, "chri": 1, "christoph": [1, 86], "chunck": 80, "ci": [28, 29], "circl": 77, "circumst": 37, "citi": 84, "clarifi": 78, "clariti": [73, 76, 85], "class": [0, 2, 3, 4, 7, 8, 16, 17, 27, 28, 29, 58, 59, 72, 73, 74, 75, 76, 77, 78, 83, 85], "classic": [76, 85], "cldtot": 84, "clear": [77, 84], "clearli": [72, 77], "clock": 80, "close": [73, 77, 79], "closer": 80, "cloud": 84, "cloudi": 84, "cluster": [52, 53, 54, 55, 56, 57], "cm": 82, "cmap": [75, 79], "co": 73, "code": [1, 17, 70, 71, 72, 73, 77, 78, 80, 84, 85], "coeffici": [71, 79], "cognit": [1, 69, 81, 86], "colab": [70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "collect": [0, 75], "colleg": 11, "collin": [79, 86], "color": [28, 71, 72, 73, 75, 77, 79, 80, 82, 83, 84, 85], "column": 62, "com": [69, 84], "combin": [1, 43, 71, 72], "come": [1, 71, 73, 77, 78, 80, 84], "command": 85, "common": [1, 72, 73, 75], "commonli": [77, 80, 84], "commun": [13, 71], "compar": [1, 40, 69, 76, 78, 85], "compare_df": 85, "comparison": [4, 70, 79], "compat": [2, 72, 74, 75, 76, 77, 78], "compil": 69, "complet": [71, 84, 85], "complex": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 52, 55, 56, 62, 70, 71, 72, 77, 84], "complexifi": 71, "compli": 77, "complic": 1, "compon": [71, 72, 73, 76, 78, 83], "compromis": 72, "comput": [0, 1, 2, 3, 4, 5, 6, 10, 11, 13, 32, 33, 43, 44, 47, 50, 51, 58, 59, 65, 69, 70, 71, 72, 73, 74, 75, 76, 77, 81, 83, 84, 85, 86], "computation": [1, 73], "computationalpsychiatri": 69, "concaten": 83, "concentr": 11, "concept": [71, 78, 84], "concern": 71, "concis": 84, "cond": 80, "condit": 85, "confid": 73, "confidence_level": 73, "connect": [1, 6, 16, 61, 71, 72, 77, 80, 84], "consequ": [71, 72], "consid": [65, 71, 72, 74, 76, 77, 80, 83, 84, 85], "consider": 1, "consist": [17, 62, 71, 72, 73, 75, 77, 79, 80, 83, 85], "constand": 80, "constant": [14, 71, 73, 80], "constitud": 71, "constitut": [80, 84], "constrained_layout": [71, 72, 73, 74, 76, 77, 78, 80, 81, 83, 85], "contain": [0, 1, 2, 3, 4, 16, 26, 30, 31, 43, 44, 54, 62, 69, 71, 72, 78, 81, 84], "context": [2, 4, 62, 74, 76, 77, 83, 84, 85], "contextu": 1, "contin": 3, "conting": [72, 75, 77, 83, 85], "contingencylist": 72, "continu": [1, 2, 3, 4, 5, 6, 16, 20, 28, 29, 33, 46, 58, 61, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 83, 84, 85], "continuous_input_upd": [35, 48], "continuous_node_prediction_error": [50, 51], "continuous_node_value_prediction_error": [49, 51], "continuous_node_volatility_prediction_error": [49, 50], "continuous_precis": 16, "contrari": 72, "control": [1, 71, 72, 78, 84, 85], "conveni": [71, 77], "converg": [74, 76, 77, 78, 79, 81, 83, 85], "convert": [28, 29, 58, 71, 73, 74, 75, 81, 83, 85], "copyright": 1, "core": [2, 17, 69, 72, 74, 76, 77, 78, 79, 81, 83, 85], "correct": [73, 86], "correctli": [27, 79], "correl": [0, 26, 79], "correspond": [16, 28, 29, 73, 74, 77, 78, 79, 80, 83, 84], "cost": 83, "costli": 73, "could": [32, 33, 34, 72, 75, 76, 77, 80, 83, 85], "count": [13, 73, 78], "counterpart": [72, 74], "coupl": [0, 1, 5, 6, 16, 23, 28, 35, 42, 43, 44, 48, 49, 60, 61, 65, 69, 70, 74, 82, 83, 85], "coupling_fn": [20, 24, 60, 72, 80], "coupling_strength": 60, "coupling_typ": 61, "cours": [70, 84], "cov": 73, "covari": 73, "cover": [71, 84, 85], "cpc": 70, "cpython": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "creat": [0, 2, 3, 4, 16, 28, 29, 53, 54, 69, 70, 73, 78, 79, 80, 81, 83, 84, 85], "create_belief_propagation_fn": 83, "creation": [72, 77, 84, 85], "creativ": 1, "crisi": 76, "critic": [1, 72, 77], "cross": [4, 78, 85, 86], "crucial": 78, "csv": 84, "cumsum": [71, 80, 84], "currenc": 76, "current": [0, 1, 41, 60, 69, 71, 72, 73, 77, 84, 86], "current_belief": 85, "curv": 28, "custom": [16, 70, 74, 75, 78, 83, 84, 85], "custom_op": [75, 83], "customdist": [78, 85], "customis": 70, "customop": [75, 83], "d": [1, 11, 69, 73, 86], "dai": 84, "dark": 84, "dash": 71, "data": [0, 1, 2, 3, 4, 5, 6, 28, 29, 32, 33, 34, 62, 68, 69, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86], "data2": 73, "databas": 84, "datafram": 68, "dataset": [77, 81, 84, 85], "daugaard": [1, 69], "daunizeau": [1, 69, 86], "dbad150": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "de": 86, "deadlock": 85, "deal": [1, 83], "debug": 84, "dec": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "decid": [71, 76, 77, 85], "decis": [1, 6, 30, 31, 69, 74, 75, 78, 79, 85], "declar": [72, 78, 80], "decreas": 83, "dedic": 76, "deeper": 69, "def": [72, 73, 75, 77, 78, 80, 83, 85], "default": [2, 3, 4, 5, 6, 16, 25, 28, 29, 32, 33, 62, 64, 65, 69, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 83, 85], "default_paramet": 25, "defin": [12, 16, 17, 28, 69, 71, 72, 74, 75, 76, 77, 78, 80, 84, 85], "definit": [65, 77], "degre": [73, 74, 76, 80], "delet": 67, "deliv": 84, "delta": [40, 73, 80], "delta_j": [50, 51], "demonstr": [1, 69, 73, 74, 77, 79, 81, 82], "denmark": 80, "denot": 71, "densiti": [0, 2, 11, 12, 13, 74, 76, 78, 82, 84], "depend": [5, 41, 71, 73, 74, 76, 77, 78, 80, 84], "depict": [29, 71, 85], "deriv": [1, 71, 73, 80], "describ": [0, 69, 70, 71, 72, 73, 74, 77, 84], "descript": [1, 71, 84], "design": [69, 70, 72, 75, 77, 78, 83, 84, 85], "despin": [71, 72, 73, 75, 78, 79, 80, 82, 83, 84, 85], "detail": [71, 78, 79, 83, 84], "detect": 81, "determin": 1, "determinist": [1, 78, 85], "dev0": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "develop": [69, 72, 85], "deviat": [28, 29, 52, 55, 56, 73, 78, 81], "df": [73, 74, 76], "diagnos": 85, "diagnost": [74, 76, 77, 78, 79, 81, 83, 85], "dict": [16, 18, 19, 20, 21, 22, 24, 25, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 57, 58, 59, 60, 61, 62, 63, 67], "dictionari": [16, 62, 69, 72, 74, 76, 84], "dictonari": 25, "did": [76, 78], "differ": [1, 2, 3, 4, 5, 16, 36, 37, 46, 60, 71, 72, 73, 74, 76, 77, 78, 80, 83, 84], "differenti": [40, 69, 73, 74, 76, 80], "difficult": [1, 73, 84], "diffus": [69, 72], "dimens": [3, 5, 6, 71, 72, 73, 78], "dimension": [73, 83], "dir": 11, "direct": [71, 72], "directli": [35, 72, 74, 76, 77, 78, 80, 83], "dirichlet": [11, 21, 35, 73, 75], "dirichlet_nod": 45, "disambigu": 72, "disappear": 80, "discrep": [74, 76], "discret": [1, 75, 85], "discuss": [1, 71, 83, 85], "displai": [73, 78, 80, 85], "dissoci": [0, 72], "dist": 79, "dist_mean": 82, "dist_std": 82, "distanc": 73, "distant": 73, "distinguish": [78, 84], "distribut": [7, 8, 9, 10, 11, 13, 14, 35, 56, 58, 59, 69, 70, 71, 72, 74, 75, 76, 77, 79, 81, 84, 85], "dive": [71, 72], "diverg": [0, 11, 75, 78, 79, 85], "dk": 80, "do": [69, 72, 73, 74, 75, 76, 77, 78, 80, 84, 85], "documatt": 72, "document": [69, 75, 84, 85], "doe": [73, 75, 77, 84, 85], "doesn": 80, "doi": [1, 13, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 69, 86], "dollar": 76, "domain": [76, 85], "don": [71, 84], "done": [72, 73], "dopamin": 1, "dopaminerg": [69, 86], "dot": 76, "down": [0, 69, 71, 73, 84], "download": [69, 81, 84], "drag": 76, "drai": 74, "draw": [1, 28, 29, 74, 76, 77, 78, 79, 81, 83, 85], "drift": [5, 6, 16, 43, 72, 80, 84], "dse": 85, "dtype": [9, 14, 56, 73, 74, 75, 76, 77, 83, 84, 85], "due": 72, "duplic": [78, 79], "dure": [0, 17, 44, 56, 69, 72, 76, 78, 79, 80, 86], "dx": 86, "dynam": [17, 69, 70, 77, 80, 81, 84, 85], "e": [1, 2, 5, 6, 16, 28, 31, 36, 37, 41, 42, 43, 44, 46, 49, 50, 51, 60, 62, 66, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 81, 83, 84, 85, 86], "e49547": 86, "each": [2, 3, 4, 17, 28, 29, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 52, 53, 54, 56, 57, 58, 59, 62, 64, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85], "eas": 69, "easili": [72, 75, 77, 84, 85], "ecg": 81, "ecg_peak": 81, "ecosystem": 69, "edg": [17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 83], "edgecolor": [72, 73, 77, 79, 83, 85], "editor": 86, "ef": [40, 73], "effect": [44, 69, 76, 78, 79, 86], "effective_precis": 44, "effici": [1, 69, 71], "ehgf": [37, 65], "eigenvalu": 73, "eigenvector": 73, "eigh": 73, "either": [54, 61, 72, 77, 78, 80, 84], "ekaterina": [1, 86], "elaps": [71, 83], "electrocardiographi": 81, "electron": 1, "element": 80, "elicit": [14, 73], "elif": 86, "ellicit": 9, "ellips": 73, "elpd": 78, "elpd_diff": 85, "elpd_loo": [78, 85], "els": [73, 79, 83], "elsevi": 69, "emb": [74, 76], "embed": [0, 70, 74, 76, 78], "empir": 1, "empti": 17, "en": [7, 8], "enabl": 1, "encapsul": [73, 75], "encod": [1, 69, 71, 75, 77, 79, 84, 85], "end": [9, 13, 40, 58, 71, 73, 77, 80], "endogen": 44, "energi": [1, 86], "enhanc": 69, "enno": [1, 86], "ensur": [65, 73, 74, 76, 78, 79, 83, 84], "enter": 71, "entir": 72, "entri": 16, "enumer": [71, 73, 85], "environ": [1, 71, 72, 77, 78, 84, 85], "environment": [1, 72, 79], "eq": 11, "equal": [1, 3, 37, 62, 73, 80], "equat": [1, 11, 71, 74, 75, 76, 77, 80, 83, 84], "equival": [73, 77], "erdem": 86, "eric": 86, "error": [1, 40, 47, 48, 49, 50, 51, 54, 62, 65, 69, 72, 73, 76, 80, 81, 84, 85, 86], "especi": [71, 73, 78, 83, 85], "ess": [78, 79], "ess_bulk": [2, 77, 85], "ess_tail": [2, 77, 85], "estim": [0, 1, 2, 28, 29, 70, 71, 73, 77, 78, 79, 83, 84, 85], "et": [0, 69, 71, 72, 74, 77, 78, 84, 85], "eta": 73, "eta0": [10, 16, 29, 74], "eta1": [10, 16, 29, 74], "etc": 72, "euro": 76, "european": 86, "eval": 78, "evalu": [13, 71, 75, 77, 83, 86], "even": [1, 71, 80], "event": [1, 76, 82], "everi": [70, 71, 72, 75, 78, 83, 84, 85], "everyth": 77, "evid": [6, 73, 85], "evidenc": 73, "evolut": [71, 74, 76, 77, 84, 85], "evolutionari": 1, "evolv": [70, 71, 83], "exact": [71, 77, 84], "exactli": [71, 75, 77, 78], "exampl": [1, 2, 9, 14, 28, 29, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 84, 85], "excel": 77, "except": [74, 76, 77, 85], "exchang": 76, "exclud": [66, 83], "exclus": 66, "execut": [0, 72], "exert": [71, 72], "exhibit": [74, 76], "exist": [52, 54, 55, 56, 57, 61, 72], "exogen": 44, "exot": 75, "exp": [44, 71, 73, 78, 83, 84], "expect": [0, 5, 6, 9, 10, 14, 16, 28, 29, 31, 35, 37, 40, 41, 42, 43, 44, 55, 58, 71, 72, 73, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85], "expected_mean": [9, 10, 14, 43, 52, 55, 56, 71, 72, 77, 78, 79, 82, 83, 85], "expected_precis": [10, 14, 44, 72, 82], "expected_sigma": [52, 55, 56], "experi": [77, 85], "experiment": [1, 70, 77, 78, 79, 83, 85], "explain": [78, 84, 85], "explan": 85, "explicit": 77, "explicitli": [1, 72, 73, 78, 81], "explor": 85, "exponenti": [7, 8, 13, 22, 70, 71, 84], "exponential_famili": [7, 8], "export": [68, 77], "express": [1, 72, 73, 75, 76, 80, 83, 84], "extend": [72, 73, 74, 76, 78], "extens": [1, 70, 85], "extract": [74, 76, 81, 82, 85], "extrem": [1, 73, 76, 83], "f": [43, 69, 71, 72, 73, 80, 84], "f_1": 72, "f_i": 72, "f_n": 72, "f_x": 73, "facilit": 72, "fact": [80, 83], "fail": 37, "fairli": 79, "fall": 76, "fals": [28, 29, 73, 80, 85], "famili": [7, 8, 13, 22, 58, 59, 70, 71, 84], "familiar": 77, "far": [72, 76, 77, 84, 85], "fashion": 1, "fast": [80, 83, 85], "featur": [6, 72, 78, 81, 84], "februari": 86, "fed": 78, "feed": [28, 29, 83], "fewer": 82, "field": [1, 72, 77, 85], "fig": [73, 75, 79, 80, 82], "figsiz": [28, 29, 71, 72, 73, 75, 77, 79, 80, 82, 83, 84, 85], "figur": [28, 29, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 83, 84, 85], "fil": 11, "file": 1, "filer": 1, "fill": 79, "fill_between": [75, 82, 83], "filter": [0, 1, 5, 6, 13, 16, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 72, 77, 78, 79, 82, 83, 85, 86], "final": [1, 84, 85], "find": [55, 69, 70, 72, 76, 77, 84], "finit": [10, 46], "fir": 81, "firebrick": 83, "first": [0, 1, 3, 5, 6, 10, 16, 33, 36, 37, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 83, 84, 85], "first_level_binary_surpris": [74, 85], "first_level_gaussian_surpris": [76, 81, 84], "firt": 31, "fit": [2, 3, 4, 5, 6, 32, 33, 34, 73, 77, 78, 79, 80, 83, 84], "fix": [2, 58, 59, 71, 77, 78, 80, 84, 85], "flatten": 78, "flexibl": [1, 69, 73, 75, 84, 85], "flight": 76, "float": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 32, 33, 34, 52, 55, 56, 60, 61, 62, 75, 78], "float32": [9, 14, 73, 74, 76, 77, 84, 85], "float64": [75, 83], "floor": 76, "fluctuat": 71, "flux": 84, "fn": 85, "fnhum": [1, 69, 86], "fo": 1, "focus": [72, 83], "folder": 69, "follow": [1, 11, 65, 69, 71, 72, 73, 74, 75, 76, 80, 83, 84, 85], "forc": 83, "fork": [74, 85], "form": [1, 71, 72, 73, 78, 80, 84], "formal": 71, "formul": 1, "forward": [69, 71, 74, 76, 78, 79, 83, 84, 85], "found": [1, 71, 72, 74, 76, 84], "foundat": [1, 69, 84, 86], "four": [1, 72, 83, 85], "fpsyt": 69, "frac": [11, 13, 14, 28, 31, 40, 41, 43, 44, 51, 59, 71, 73, 75, 78, 83], "fraction": 84, "frame": [68, 71, 73, 81, 84], "framework": [1, 69, 70, 71, 72, 73], "franc": 76, "free": [1, 69, 74, 77, 79], "freedom": 73, "friston": [1, 69, 86], "from": [0, 1, 2, 5, 6, 9, 11, 13, 14, 28, 29, 30, 31, 40, 48, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 80, 81, 82, 84, 85], "frontier": [1, 69, 86], "frontiersin": [1, 86], "fry": 56, "fr\u00e4ssle": 69, "full": [1, 6], "fulli": [71, 84], "func": 73, "funcanim": 73, "function": [1, 2, 3, 4, 5, 6, 15, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39, 60, 62, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 83, 84, 85], "fundament": 71, "fundat": 1, "further": [69, 71, 72, 73, 78, 82, 83], "fusion": 77, "futur": [0, 71, 86], "g": [1, 5, 6, 69, 71, 73, 77, 79, 80, 85], "g_": [73, 80], "gabri": 86, "gamma": [11, 13, 73, 75], "gamma_a": 44, "gaussian": [0, 1, 2, 5, 6, 12, 13, 14, 16, 28, 33, 34, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 72, 77, 78, 79, 80, 81, 83, 85, 86], "gaussian_predictive_distribut": 73, "gcc": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "ge": 86, "gelman": 86, "gener": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 63, 65, 70, 72, 73, 74, 75, 77, 78, 79, 80, 83, 85, 86], "generalis": [1, 70, 75, 77], "generalised_filt": 73, "get": [41, 72, 73, 76, 77, 78, 79, 82, 83, 84, 85], "get_legend_handles_label": [71, 85], "get_network": 83, "get_update_sequ": 72, "ghgf": [69, 84, 85], "gif": 73, "git": 69, "github": [11, 69], "githubusercont": 84, "give": [74, 76, 77, 80, 83, 85], "given": [0, 6, 9, 11, 14, 28, 31, 32, 33, 34, 35, 40, 43, 44, 46, 50, 51, 55, 56, 59, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 83, 84, 85], "global": [1, 76], "go": [71, 74, 76, 77, 78, 83, 84], "goe": 75, "good": [73, 77, 78, 79, 83], "googl": [70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "grad": [75, 83], "grad_custom_op": 83, "grad_logp_fn": 83, "grad_volatil": 83, "gradcustomop": 83, "gradient": [3, 75, 83], "grai": 83, "grandpar": 72, "graph": [62, 70, 72, 75, 83], "graphviz": [27, 74, 76], "greater": [72, 73], "greec": 76, "green": [79, 80], "grei": [28, 71, 73, 76, 79, 82], "grid": [71, 73, 79, 80, 82, 84, 85], "ground": 84, "group": [70, 71, 79, 85], "grow": 75, "grw": [71, 84], "grw_1": 84, "grw_2": 84, "guess": 73, "guid": 71, "gz": 75, "h": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 71, 73, 85, 86], "ha": [1, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 60, 64, 71, 72, 73, 74, 75, 76, 77, 78, 83, 84, 85], "had": [77, 78, 85], "halfnorm": 78, "hamiltonian": [74, 76, 85], "hand": [70, 77], "handi": 80, "handl": [70, 71, 73, 75, 77, 78, 85], "happen": [71, 77, 80, 84], "harrison": [69, 86], "hat": [9, 14, 28, 31, 41, 43, 44, 50, 51, 71, 77, 78, 80], "have": [1, 35, 40, 48, 65, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 84, 85], "hdi_3": [2, 77, 85], "hdi_97": [2, 77, 85], "he": 77, "head": [77, 84], "heart": [0, 71, 72], "heartbeat": 81, "heatmap": 26, "heavi": 72, "hedvig": [1, 86], "height": [28, 29, 73, 84], "heinzl": 69, "help": [73, 76, 78, 84], "her": 77, "here": [1, 2, 30, 31, 32, 33, 34, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 83, 84, 85], "hgf": [0, 1, 2, 3, 4, 5, 6, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 40, 63, 69, 70, 71, 72, 73, 75, 78, 79, 80, 81, 82, 83, 84], "hgf_loglik": [74, 76, 77, 79, 81, 85], "hgf_logp_op": [2, 74, 76, 77, 78, 79, 81, 85], "hgf_logp_op_pointwis": [78, 85], "hgf_mcmc": [74, 76], "hgfdistribut": [74, 75, 76, 77, 78, 79, 81, 85], "hgfpointwis": [78, 85], "hhgf_loglik": 2, "hidden": [1, 71, 83, 84, 85], "hide": 83, "hierarch": [0, 1, 5, 6, 13, 16, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 72, 77, 79, 81, 82, 83, 85, 86], "hierarchi": [0, 1, 2, 3, 4, 16, 69, 71, 72, 74, 76, 84], "hierarchicalgaussianfilt": 77, "high": [73, 82, 83], "high_nois": 80, "high_prob": 83, "higher": [71, 74, 76, 78, 79, 80, 84, 85], "highest": 1, "highli": [1, 76, 85], "hist": 83, "hold": [71, 73, 77], "home": 1, "hostedtoolcach": 85, "hour": [70, 84], "hourli": [84, 86], "how": [40, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "howev": [1, 71, 72, 73, 75, 76, 77, 78, 80, 81, 85], "html": 11, "http": [1, 7, 8, 11, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 69, 78, 79, 84, 86], "human": [1, 69, 86], "hyper": 78, "hyperparamet": [13, 40, 59, 73], "hyperprior": [78, 79], "i": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 16, 17, 28, 29, 31, 32, 33, 35, 36, 37, 40, 42, 43, 44, 48, 49, 50, 51, 54, 58, 59, 60, 62, 64, 65, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86], "iain": 86, "idata": [2, 81, 83, 85], "idata_kwarg": 85, "idea": [71, 72, 76, 77, 79], "ident": 80, "identifi": 79, "idx": [75, 79], "iglesia": [1, 69, 74, 77, 85, 86], "ignor": [5, 6], "ii": [1, 70], "iii": 1, "ilabcod": 84, "illustr": [1, 71, 72, 73, 75, 76, 77, 80, 81, 83, 84, 85], "imagin": 80, "impact": 83, "impl": 40, "implement": [0, 16, 43, 58, 59, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "impli": [35, 40, 58, 63, 71, 73, 75, 76, 83, 84], "implicitli": 77, "import": [1, 2, 9, 14, 28, 29, 69, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "import_dataset1": 81, "importantli": [71, 72], "imposs": 65, "improv": [65, 73, 85], "imshow": 75, "includ": [5, 6, 16, 71, 72, 73, 74, 76, 77, 78, 80, 81, 85], "incom": [71, 84], "incompat": 85, "incorpor": [16, 42, 49, 77, 78], "incorrect": 80, "increas": [73, 74, 76, 78, 79, 80, 83, 84, 85], "increment": [62, 71], "inde": 78, "independ": [70, 73, 79], "index": [17, 23, 28, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 69, 72], "indic": [60, 67, 71, 76, 77, 78, 79, 80, 81, 83, 85], "individu": [1, 69, 79, 86], "inf": [5, 16, 29, 32, 33, 34, 74, 75, 78, 83], "infer": [0, 1, 5, 6, 13, 40, 58, 59, 62, 69, 70, 71, 72, 73, 76, 77, 82, 85, 86], "inferred_paramet": 79, "infin": 84, "infinit": [75, 83], "influenc": [0, 1, 43, 71, 72, 73, 74, 76, 78, 80, 83, 84, 85], "inform": [1, 13, 17, 62, 72, 73, 74, 75, 76, 78, 80, 83, 84, 85], "infti": 76, "ingredi": 77, "inherit": [5, 6, 69, 71, 84], "initi": [2, 3, 4, 16, 17, 72, 73, 74, 76, 77, 78, 79, 81, 83, 84, 85], "initial_belief": 85, "initial_mean": [16, 28, 29, 74, 76, 77, 78, 79, 81, 85], "initial_precis": [16, 28, 29, 74, 76, 77, 81, 85], "initv": 79, "inp": 83, "inplac": 75, "input": [0, 1, 2, 3, 4, 5, 6, 16, 17, 28, 29, 30, 31, 32, 33, 34, 35, 45, 46, 48, 49, 53, 54, 55, 57, 62, 64, 66, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "input_convers": 81, "input_data": [2, 3, 4, 5, 6, 28, 29, 69, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "input_idx": [62, 80, 83], "input_nodes_idx": 45, "input_precis": [5, 6], "input_typ": 81, "insert": [24, 71], "insid": [77, 80, 83, 85], "inspir": [69, 71, 72], "instal": [27, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "instanc": [0, 6, 26, 27, 28, 29, 30, 31, 32, 33, 34, 63, 65, 69, 72, 74, 76, 77, 78, 84], "instanti": [75, 83], "instead": [2, 3, 4, 76, 83, 84, 85], "instruct": 72, "instrument": 80, "int": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 73, 80], "int32": 85, "integ": [2, 3, 4, 72], "integr": [1, 69, 73, 85], "intellig": 1, "inter": 1, "interact": [70, 71, 85], "intercept": 71, "interest": [71, 73, 78, 79, 83, 84], "interestingli": 73, "interfac": 77, "interleav": 0, "intern": [1, 40, 58, 59, 70, 75, 77, 78, 80, 84, 86], "interocept": 70, "interpol": 75, "interpret": 1, "intersect": 70, "interv": [41, 73, 80, 81], "interven": 76, "intervent": 76, "intract": 73, "introduc": [1, 70, 71, 75, 84, 85], "introduct": [69, 70], "introductori": 84, "intuit": [1, 70, 77], "invalid": 73, "invers": [1, 5, 6, 31, 69, 70, 71, 73, 77, 78, 79, 83], "inverse_temperatur": [78, 79], "invert": [1, 84, 85], "involv": 1, "io": [11, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "ion": 11, "ipykernel_3799": 76, "ipython": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "irrespect": 56, "isbn": 1, "isclos": [74, 76], "isnan": [75, 83], "issn": 1, "item": [2, 3, 4, 83], "iter": [71, 74, 76, 77, 78, 79, 81, 82, 83, 85], "its": [1, 41, 43, 54, 60, 67, 69, 70, 71, 72, 74, 76, 77, 78, 80, 81, 84, 85], "itself": [71, 72, 73, 74, 80, 84], "iv": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "j": [1, 44, 51, 69, 86], "jacobian": [75, 83], "jan": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86], "jax": [0, 5, 17, 29, 30, 31, 56, 62, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "jaxlib": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "jean": [1, 86], "jit": [69, 75, 83], "jitted_custom_op_jax": [75, 83], "jitted_vjp_custom_op_jax": 75, "jitter": [74, 76, 77, 78, 79, 81, 83, 85], "jl": 77, "jnp": [16, 29, 32, 33, 34, 73, 74, 75, 76, 77, 79, 80, 83], "job": [74, 76, 77, 78, 79, 81, 83, 85], "joint": [72, 73], "jonah": 86, "journal": [1, 86], "julia": [69, 72, 77], "jump": 71, "just": [77, 78, 79, 80, 84, 85], "k": [1, 11, 30, 31, 36, 37, 41, 42, 43, 44, 46, 49, 50, 51, 69, 71, 72, 73, 75, 77, 78, 79, 80, 83, 84, 85], "kai": [1, 86], "kalman": [71, 77], "kappa": 71, "kappa_1": 71, "kappa_j": 44, "karl": [1, 86], "kasper": [69, 86], "kdeplot": 79, "keep": [80, 84], "kei": [1, 56, 71, 72, 85], "keyword": [1, 25, 72, 77], "kg": 84, "khodadadi": [1, 69], "kind": [60, 69, 71, 72, 73, 75, 76, 78, 80, 83, 84, 85], "kl": [11, 75], "kl_diverg": 75, "klaa": [1, 86], "knew": [74, 76], "know": [71, 77, 80, 85], "knowledg": 84, "known": 80, "kora": 80, "kullback": [11, 75], "kwarg": [7, 8], "l": [1, 13, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 69, 71, 85, 86], "l_a": 83, "l_b": 83, "label": [71, 72, 73, 75, 77, 78, 82, 83, 84, 85], "laew": 1, "lambda": [71, 78, 80], "lambda_1": 71, "lambda_2": [71, 80], "lambda_2x_2": 80, "lambda_3": [71, 80], "lambda_a": [43, 71, 80], "land": 84, "lanillo": 86, "lar": 86, "larg": [72, 73, 84], "larger": [72, 73, 78, 79, 84], "largest": 73, "last": [62, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "latent": 71, "later": [44, 69, 71, 78, 85], "latter": 83, "lax": [17, 62, 80, 83], "layer": [5, 71, 76, 84, 85], "layout": 76, "lead": [71, 76, 85], "learn": [1, 40, 58, 69, 71, 73, 75, 79, 80, 82, 84, 86], "learning_r": 85, "learnt": 80, "least": [0, 74, 76, 77, 78, 79, 81, 83, 85], "leav": [0, 62, 71, 78, 84, 85, 86], "lee": [78, 86], "left": [11, 13, 43, 44, 51, 71, 73, 75, 77, 84], "leftarrow": [40, 59, 73], "legend": [71, 72, 73, 77, 78, 80, 82, 83, 84, 85], "legrand": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 80, 86], "leibler": [11, 75], "len": [75, 77, 83, 85], "length": [2, 3, 4, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 62, 64, 77, 78], "leq": 80, "less": [16, 72, 77], "let": [71, 72, 73, 75, 77, 80, 84, 85], "level": [0, 1, 2, 5, 6, 16, 28, 29, 31, 33, 69, 70, 71, 72, 73, 77, 79, 80, 81, 82, 83, 84], "leverag": [73, 78], "lg": 1, "li": 71, "lib": 85, "librari": [0, 1, 72, 74, 76, 85], "like": [56, 74, 75, 76, 77, 78, 80, 84, 85], "likelihood": [52, 54, 76, 77, 78, 85], "lilian": [1, 86], "limit": [1, 37, 71, 73, 77, 80, 83, 85], "linalg": 73, "line": [71, 72, 76, 77, 80], "linear": [60, 70], "linear_hgf": 80, "linearli": 73, "linestyl": [71, 72, 73, 77, 79, 80, 82, 85], "linewidth": [71, 73, 75, 84, 85], "link": [1, 60, 69, 72, 78], "linspac": [78, 79, 82], "list": [2, 3, 4, 5, 17, 23, 28, 29, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 60, 62, 63, 64, 66, 69, 72, 75, 77, 78, 83, 84], "lit": 1, "ln": [11, 75], "load": [69, 84, 85], "load_data": [2, 28, 29, 69, 74, 76, 77, 78, 79, 84, 85], "load_ext": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "loc": [71, 73, 75, 82, 83, 84], "log": [2, 4, 5, 6, 9, 14, 28, 69, 74, 76, 77, 78, 83, 84, 85], "log_likelihoo": 85, "log_likelihood": [78, 85], "log_prob": 5, "logist": 15, "logit": [74, 85], "lognorm": 78, "logp": [5, 78, 85], "logp_fn": 83, "logp_pointwis": [78, 85], "lomakina": [1, 69, 86], "london": 11, "long": [80, 86], "longer": 73, "loo": 78, "loo_hgf": 78, "look": [73, 74, 75, 76, 80, 85], "loop": [71, 83, 84, 85], "loos": 83, "loss": 83, "loss_arm1": 83, "loss_arm2": 83, "lot": 74, "low": [82, 83], "low_nois": 80, "low_prob": 83, "lower": [71, 72, 73, 74, 75, 79], "lower_bound": 15, "lowest": 69, "luckili": 78, "m": [1, 69, 71, 72], "m2": 84, "m3": 84, "m_1": 71, "m_a": 43, "machin": 1, "made": [16, 72, 77, 78, 83, 84, 85], "magic": 84, "mai": [1, 75, 86], "main": [0, 27, 28, 29, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "major": [1, 73], "make": [1, 69, 71, 72, 74, 75, 77, 78, 82, 83, 84, 85], "make_nod": [75, 83], "manag": 80, "mani": [1, 2, 71, 72, 75, 77, 78], "manipul": [0, 17, 69, 70, 74, 77, 78, 83, 84], "manka": [69, 86], "manual": [72, 78, 80, 85], "many_binary_children_hgf": 72, "many_value_children_hgf": 72, "many_value_parents_hgf": 72, "many_volatility_children_hgf": 72, "many_volatility_parents_hgf": 72, "map": 78, "marker": 80, "market": 76, "markov": 1, "mask": [62, 83], "master": 69, "match": [5, 72, 80, 85], "math": [2, 43, 58, 59, 73, 79, 83], "mathcal": [2, 13, 71, 72, 73, 77, 78, 84], "mathemat": [1, 14, 71, 84], "mathi": [1, 13, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 69, 71, 72, 73, 84, 86], "matlab": [69, 71, 76], "matplotlib": [26, 28, 29, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "matrix": [73, 78, 83], "matter": [77, 85], "maxim": 76, "mayb": 78, "mcmc": [2, 70, 85], "mcse_mean": [2, 77, 85], "mcse_sd": [2, 77, 85], "mead": 1, "mean": [1, 2, 5, 6, 9, 12, 14, 16, 28, 29, 36, 37, 41, 42, 43, 52, 55, 56, 61, 65, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85], "mean_1": [2, 5, 6, 76], "mean_2": [5, 6], "mean_3": [5, 6], "mean_hgf": 82, "mean_mu_g0": 56, "mean_precision_hgf": 82, "measur": [75, 77, 79, 80, 81, 84], "mechan": 1, "media": 69, "member": 73, "mention": 71, "mere": 77, "messag": [69, 72], "meta": [72, 76], "meter": 84, "method": [1, 2, 3, 4, 7, 8, 16, 17, 32, 33, 58, 59, 69, 72, 73, 74, 76, 77, 78, 81, 84], "metric": 77, "michael": 86, "might": [2, 3, 4, 16, 77, 85], "miku\u0161": [1, 69], "min": 75, "mind": 85, "minim": [1, 72, 74, 76, 84, 85], "minimis": 81, "minor": 73, "misc": 1, "miss": [80, 83], "missing_inputs_data": 83, "mix": 84, "mm": 84, "modal": 81, "model": [1, 2, 3, 4, 5, 6, 26, 28, 29, 30, 31, 32, 33, 34, 37, 40, 63, 65, 70, 72, 73, 79, 80, 82, 83, 86], "model_to_graphviz": [74, 76, 78, 81, 85], "model_typ": [2, 3, 4, 16, 28, 29, 32, 72, 74, 76, 77, 78, 79, 81, 85], "modifi": 77, "modul": [0, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "modular": [69, 71, 72, 73, 85], "mojtaba": 1, "mon": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "mont": [1, 74, 76, 85], "montemagno": 80, "month": 84, "more": [70, 71, 72, 74, 75, 76, 77, 79, 80, 84, 85], "moreov": 78, "most": [16, 71, 72, 73, 74, 75, 76, 77, 83, 84], "mostli": 83, "move": [40, 71, 78, 85], "mu": [9, 14, 31, 41, 43, 50, 71, 73, 74, 76, 77, 78, 84], "mu_1": [71, 76, 80, 84], "mu_2": [71, 80], "mu_3": 80, "mu_a": [43, 44, 80], "mu_b": 80, "mu_i": 71, "mu_j": 50, "mu_temperatur": 78, "mu_volatil": 78, "much": [40, 72, 73, 76, 84, 85], "multi": [70, 78, 79], "multiarm": 70, "multilevel": [70, 78, 85], "multinomi": 75, "multipl": [1, 5, 28, 60, 72, 73, 75, 77, 78, 80, 81, 83], "multipleloc": 73, "multipli": 72, "multiprocess": 85, "multithread": 85, "multivari": 7, "multivariatenorm": 73, "must": [60, 80], "m\u00f8ller": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 86], "m\u00fcller": 69, "n": [1, 2, 4, 36, 37, 42, 43, 44, 46, 49, 50, 51, 62, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "n1662": 1, "n_": 44, "n_1": 72, "n_categori": 75, "n_j": 72, "n_level": [2, 3, 4, 5, 6, 16, 28, 29, 72, 74, 76, 77, 78, 79, 81, 85], "n_node": [18, 19, 20, 21, 22, 24, 72, 80, 83], "n_sampl": [55, 56], "nace": 1, "naiv": 73, "name": 71, "nan": [2, 3, 4, 5, 85], "nativ": [74, 76, 78, 80], "natur": [1, 71, 73], "nc": 1, "ncol": [71, 79], "ndarrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 52, 55, 56, 62], "ne": 1, "necessarili": 1, "need": [35, 36, 37, 46, 48, 72, 75, 77, 78, 79, 80, 83, 84, 85], "neg": [5, 6, 28, 37, 74, 76, 77, 80, 83, 84], "nelder": 1, "nest": [75, 77, 83, 84], "network": [0, 1, 5, 6, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 33, 34, 43, 44, 45, 53, 54, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 73, 74, 76, 77, 79, 80, 81, 82, 83, 84, 85], "neural": [0, 1, 17, 45, 53, 54, 57, 60, 65, 70, 71, 72, 80, 85], "neuroimag": [69, 86], "neuromodel": 69, "neuromodul": 1, "neuromodulatori": 1, "neuron": 1, "neurosci": [1, 69, 74, 76, 78, 86], "new": [0, 28, 29, 40, 41, 43, 44, 52, 53, 54, 55, 56, 58, 61, 62, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 83, 84, 85], "new_attribut": 72, "new_belief": 85, "new_input_precision_1": 72, "new_input_precision_2": 72, "new_mu": 56, "new_observ": 85, "new_sigma": 56, "newaxi": [2, 74, 76, 77, 78, 81, 85], "next": [1, 71, 74, 76, 77, 84], "nicola": [1, 80, 86], "nodal": 81, "nodalis": 84, "node": [2, 3, 4, 5, 6, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 32, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78, 81, 82, 83, 85], "node_idx": [28, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 57, 58, 59, 63, 66, 72, 73, 75, 83], "node_paramet": [18, 19, 20, 21, 22, 24, 25, 72], "node_trajectori": [17, 73, 75, 77, 78, 79, 82, 83, 85], "node_typ": [24, 72], "nois": [1, 72, 80], "noisi": [72, 73, 80], "noisier": [73, 80, 85], "non": [53, 57, 70], "non_sequ": 85, "none": [2, 3, 4, 6, 16, 17, 20, 22, 23, 24, 28, 29, 32, 33, 34, 35, 60, 71, 72, 74, 75, 77, 78, 80], "nonlinear_hgf": 80, "noon": 84, "norm": [73, 82], "normal": [1, 2, 7, 10, 11, 58, 59, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "note": [16, 27, 35, 42, 48, 49, 60, 71, 74, 76, 77, 78, 80, 83, 84, 85], "notebook": [70, 71, 72, 74, 76, 77, 78, 80, 82, 83, 85], "notic": 80, "notion": [71, 72], "nov": 86, "novel": 1, "novemb": 86, "now": [71, 72, 74, 76, 77, 78, 80, 83, 84, 85], "np": [2, 5, 13, 71, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85], "nrow": [71, 73, 75, 83], "nu": [13, 40, 58, 59], "num": 79, "num_sampl": 85, "number": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 28, 29, 30, 31, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 62, 64, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 85], "numer": [1, 75, 83], "numpi": [2, 4, 5, 29, 30, 31, 56, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "nut": [74, 76, 77, 78, 79, 81, 83, 85], "nutshel": 77, "o": [69, 84, 85], "o_": 77, "ob": 83, "object": [79, 85], "observ": [0, 9, 10, 13, 14, 28, 35, 40, 48, 52, 54, 55, 56, 58, 62, 69, 70, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85], "obtain": 77, "occur": [37, 75, 78], "octob": 86, "offer": [1, 71], "offici": [69, 75], "often": [37, 71, 72, 77, 78, 79], "omega": [74, 75, 76, 78, 81, 83, 84], "omega_": [74, 76, 78], "omega_1": [71, 76, 84], "omega_2": [2, 71, 74, 75, 76, 77, 81, 85], "omega_3": [74, 76], "omega_a": 44, "onc": [71, 72, 85], "one": [1, 2, 3, 4, 28, 43, 58, 59, 71, 72, 73, 77, 78, 83, 84, 85, 86], "ones": [79, 80, 83], "onli": [0, 6, 16, 29, 32, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84], "onlin": [1, 73], "oop": 84, "op": [3, 75, 83], "open": [69, 81], "oper": [69, 73, 75, 77, 84], "operand": [53, 57], "opt": 85, "optim": [1, 65, 69, 71, 72, 74, 76, 83], "optimis": [74, 76, 77], "option": [31, 43, 76, 77], "orang": 76, "order": [60, 69, 71, 72, 73, 74, 76, 77, 80, 85], "org": [1, 7, 8, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 69, 78, 79, 86], "organ": 0, "origin": [65, 69, 80], "orphan": 71, "oscil": 80, "oscillatori": 80, "other": [1, 66, 69, 71, 72, 73, 74, 76, 77, 80, 83, 84, 85], "otherwis": 83, "our": [1, 71, 73, 74, 76, 77, 78, 80, 81, 83, 85], "ourselv": [74, 76], "out": [71, 78, 85, 86], "outcom": [9, 14, 69, 70, 72, 74, 77, 78, 83, 85], "outcome_1": 85, "outcome_2": 85, "output": [75, 77, 83, 86], "output_gradi": [75, 83], "output_typ": 81, "outputs_info": 85, "outsid": 80, "over": [2, 5, 6, 13, 69, 70, 71, 72, 73, 74, 76, 77, 78, 80, 81, 83, 84, 85], "overal": [1, 76, 77], "overcom": 80, "overfit": [76, 83], "overlai": 56, "overtim": 82, "overview": 71, "own": [43, 71, 84], "p": [1, 11, 31, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "p1": 75, "p2": 75, "p3": 75, "p_a": [43, 80, 83], "p_loo": [78, 85], "pablo": 86, "packag": [1, 69, 72, 77], "page": 1, "pair": 71, "pan": 81, "panda": [68, 77, 81, 84], "panel": [29, 72, 76, 77], "paper": [1, 69, 71], "parallel": [3, 5, 6, 73, 78], "paramet": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 16, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 78, 80, 81, 84], "parameter": [16, 71], "parameter_structur": 62, "parameters_from_sufficient_statist": 73, "parametr": [11, 13, 17, 31, 52, 54, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 85], "parametris": [24, 83, 84, 85], "paraticip": [30, 31], "parent": [0, 5, 6, 16, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 53, 54, 57, 58, 59, 60, 61, 64, 65, 66, 69, 71, 72, 73, 74, 76, 80, 81, 82, 83, 84], "parent_idx": 60, "pareto": 78, "part": [5, 6, 16, 69, 71, 72, 75, 76, 77, 78, 80, 84, 85], "partial": [75, 79, 83], "particip": [77, 78, 79, 81, 85], "particular": [71, 84], "pass": [2, 3, 4, 5, 6, 17, 35, 48, 58, 69, 71, 72, 73, 74, 76, 77, 80, 83, 84], "past": [73, 77], "patch": 73, "patholog": 1, "pattern": 86, "pct": 78, "pd": 84, "pdf": [1, 73, 82], "peak": 81, "penni": 11, "per": [78, 79], "percept": [1, 69, 86], "perceptu": [1, 2, 3, 4, 16, 77, 78, 79], "pereira": 69, "perform": [1, 5, 6, 37, 43, 62, 65, 70, 71, 72, 74, 75, 76, 77, 80, 81, 83, 84, 85], "perspect": [74, 76], "peter": [1, 86], "petzschner": 69, "pfenning": [84, 86], "phasic": [5, 6, 16, 43, 44, 71, 84], "phenomena": 72, "phenomenon": 80, "phi": 71, "physio_df": 81, "physiolog": [70, 76], "pi": [13, 14, 28, 41, 44, 51, 71, 73, 74, 76, 80], "pi_1": 71, "pi_a": 44, "pi_i": 71, "pi_j": 51, "pid": 85, "piec": 85, "pip": [69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "pjitfunct": 5, "place": [71, 72, 78, 83], "plai": [1, 76], "plausibl": 69, "pleas": [1, 78], "plot": [71, 72, 73, 75, 77, 79, 80, 82, 83, 84, 85], "plot_compar": 85, "plot_confidence_interv": 73, "plot_correl": 76, "plot_network": [72, 73, 74, 75, 76, 80, 82, 83, 84, 85], "plot_nod": [72, 75, 80, 83], "plot_posterior": [78, 83], "plot_raw": 81, "plot_trac": [74, 75, 76, 77, 81, 85], "plot_trajectori": [69, 72, 74, 76, 80, 81, 84, 85], "plt": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "pm": [2, 74, 75, 76, 77, 78, 79, 81, 83, 85], "pmid": 1, "point": [13, 32, 33, 34, 41, 62, 71, 72, 73, 74, 75, 76, 77, 78, 83, 84], "pointer": [35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 50, 51, 53, 54, 57, 58, 59], "pointwis": [4, 78, 85], "pointwise_loglikelihood": [78, 85], "pool": 79, "poor": 84, "popen_fork": 85, "popul": 78, "popular": [73, 85], "posit": [72, 77, 78, 84], "possess": 80, "possibl": [10, 43, 64, 70, 72, 75, 77, 78, 80, 81, 84, 85], "post": 75, "post1": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "posterior": [1, 2, 28, 29, 46, 58, 62, 65, 69, 70, 71, 73, 84], "posterior_update_mean_continuous_nod": [36, 37], "posterior_update_precision_continuous_nod": [36, 37], "posteriori": 78, "potenti": [2, 74, 75, 76, 77, 79, 81, 83, 85], "power": [85, 86], "pp": [13, 40, 58, 59], "ppf": 73, "ppg": 81, "pr": [74, 77], "practic": [70, 72, 77, 86], "pre": [16, 17, 52, 54, 56, 74, 75, 76, 85], "precipit": 84, "precis": [1, 5, 6, 10, 12, 14, 16, 28, 29, 36, 37, 41, 42, 44, 46, 47, 55, 65, 69, 70, 71, 72, 73, 74, 75, 76, 80, 83, 84], "precision_1": [2, 5, 6], "precision_2": [2, 5, 6], "precision_3": [5, 6], "precsnoland": 84, "prectotland": 84, "predict": [1, 13, 14, 17, 40, 47, 48, 49, 50, 51, 54, 62, 65, 70, 72, 73, 76, 77, 78, 81, 83, 84, 86], "prediction_sequ": 65, "presenc": 79, "present": [69, 70, 71, 72, 74, 76, 77, 78, 83, 84], "press": 86, "previou": [0, 1, 41, 54, 55, 71, 72, 74, 75, 76, 77, 78, 80, 84, 85], "previous": [71, 77, 84], "principl": [1, 65, 71, 72, 77, 84, 85], "print": [2, 69], "prior": [2, 70, 72, 73, 74, 76, 77, 78, 81, 84, 85], "probabilist": [0, 1, 2, 17, 28, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 57, 58, 59, 64, 69, 70, 71, 76, 77, 81, 83, 85], "probabl": [0, 1, 2, 4, 5, 6, 9, 10, 13, 28, 31, 35, 52, 58, 59, 70, 71, 73, 74, 76, 77, 78, 79, 83, 84, 85], "problem": [70, 78, 79], "procedur": [72, 78, 85], "proceed": 78, "process": [1, 21, 36, 37, 43, 45, 53, 54, 57, 70, 72, 73, 80, 83, 84, 85], "produc": [78, 83, 85], "product": [75, 83], "programmat": 77, "progress": [72, 75, 80], "propag": [0, 17, 62, 72, 77, 84, 85], "propens": [71, 78], "properti": [1, 72, 73], "proport": 73, "propos": 65, "provid": [1, 2, 3, 4, 5, 16, 28, 31, 60, 71, 72, 74, 75, 76, 77, 78, 80, 83, 84, 85], "proxim": 72, "pseudo": [13, 73, 78], "psi": [11, 35, 48, 75], "psychiatri": [69, 70, 77, 78, 84], "psycholog": 77, "pt": [75, 78, 83, 85], "public": [1, 11, 75], "publish": [1, 40, 58, 59, 86], "pulcu": [83, 86], "punish": [70, 86], "purpos": [71, 77, 82], "put": 76, "pv": 86, "pval": 75, "py": [76, 85], "pyhgf": [1, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "pymc": [0, 2, 5, 6, 74, 75, 76, 77, 78, 79, 81, 83, 85], "pyplot": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "pytensor": [74, 75, 76, 77, 78, 79, 81, 83, 85], "python": [69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "python3": 85, "pytre": 72, "pytress": 72, "q": [1, 11, 75], "qualiti": 78, "quantifi": 40, "quantiti": [78, 82, 83, 84, 85], "question": 73, "quickli": [76, 85], "quit": 76, "r": [69, 71, 73, 80, 81, 83], "r_a": 73, "r_hat": [2, 77, 85], "rain": 84, "raman": 69, "rand": 73, "randn": 73, "random": [1, 5, 6, 16, 43, 56, 72, 73, 75, 77, 78, 79, 80, 82, 83], "randomli": [71, 79, 85], "rang": [71, 72, 73, 75, 77, 78, 79, 82, 83, 84], "rank": 85, "rapidli": 73, "rate": [40, 43, 58, 69, 71, 73, 74, 76, 77, 82, 83, 84, 85], "rather": 85, "ratio": [40, 73], "ration": 86, "raw": 84, "rcparam": [71, 72, 73, 74, 76, 77, 78, 80, 81, 83, 85], "reach": 72, "react": 76, "read": [28, 29, 84, 85], "read_csv": 84, "reader": 71, "readi": [83, 85], "real": [1, 72, 73, 74, 76, 77, 80, 81, 84, 85], "reanalysi": 86, "reason": [72, 74, 76, 77, 78], "recap": 85, "receiv": [0, 35, 43, 54, 62, 69, 71, 72, 75, 77, 78, 80, 83, 85], "recent": 1, "recommend": [74, 76, 77, 78, 79, 81, 83, 85], "reconstruct": 85, "record": [70, 83, 84], "recov": [0, 58, 70, 83], "recoveri": [70, 77, 85], "recurs": [66, 69], "red": 79, "reduc": 65, "ref": 79, "ref_val": 78, "refer": [1, 7, 8, 11, 13, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 71, 72, 75, 77, 78, 79, 84], "reflect": [72, 84], "regist": [72, 80, 85], "regular": [37, 71, 74, 85], "reinforc": [1, 70, 71, 73, 74, 75], "relat": [1, 77, 81], "relationship": 60, "relax": 82, "releas": 69, "relev": [16, 74, 76, 80], "reli": [71, 73, 78], "reliabl": [78, 79], "remain": [67, 69, 73, 83], "rememb": 85, "remot": 71, "remov": [67, 84], "reparameter": [78, 79, 85], "repeat": [71, 73, 78, 83, 84], "replac": [75, 83], "report": [1, 79], "repres": [1, 5, 6, 16, 43, 71, 72, 73, 75, 77, 78, 80, 84], "requier": [75, 83], "requir": [4, 27, 30, 32, 33, 34, 43, 72, 73, 77, 78, 83, 84, 85], "rescorla": [71, 74, 79], "research": [1, 77], "resembl": 77, "resolut": 1, "respect": [11, 71, 72, 76, 85], "respir": 81, "respond": 85, "respons": [2, 3, 4, 5, 6, 69, 70, 74, 76, 78, 79, 81, 84, 85, 86], "response_funct": [2, 3, 4, 6, 69, 74, 76, 77, 78, 79, 81, 84, 85], "response_function_input": [2, 3, 4, 5, 6, 30, 31, 32, 33, 34, 69, 77, 78, 79, 85], "response_function_paramet": [5, 6, 30, 31, 32, 33, 34, 69, 74, 77, 78, 79], "rest": [1, 73], "restrict": [72, 76], "result": [1, 2, 69, 72, 73, 74, 75, 76, 77, 78, 81, 83, 84, 85], "retriev": [72, 76, 81, 85], "return": [0, 4, 5, 6, 9, 10, 11, 13, 14, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 80, 81, 83, 84, 85], "revert": [43, 71], "review": [71, 84], "reward": [70, 77, 85, 86], "rf": [73, 78], "rhat": [78, 79], "rho": [71, 80], "rho_1": 71, "rho_2": 80, "rho_3": 80, "rho_a": [43, 80], "rhoa": 84, "right": [11, 13, 43, 44, 51, 71, 73, 75, 77, 83], "rise": 76, "rl": 1, "robert": 86, "robust": [74, 76, 77, 78, 79, 81, 83, 85], "rocket": 78, "role": [0, 1, 76], "root": [0, 62, 66, 71, 72, 84], "row": 28, "rr": 81, "rr_": 81, "rule": [85, 86], "run": [70, 71, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85], "runtimewarn": 85, "rust": 69, "rw": 85, "rw_idata": 85, "rw_model": 85, "rw_updat": 85, "s11222": 86, "s_0": 77, "s_1": 77, "sa": [69, 85], "sake": 77, "salient": 76, "same": [1, 2, 3, 4, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 60, 64, 71, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85], "sampl": [1, 2, 55, 56, 65, 70, 71, 72, 73, 77, 79, 81, 82, 83, 84], "samuel": 86, "sandra": [1, 86], "satellit": 86, "save": [44, 73, 78, 79, 85], "scalar": 73, "scale": [71, 73, 82, 84, 85], "scaling_factor": 73, "scall": 71, "scan": [17, 62, 83, 85], "scan_fn": 17, "scat": 73, "scat2": 73, "scatter": [72, 73, 77, 79, 83, 85], "scatterplot": 79, "scheme": [1, 72], "schrader": 69, "sch\u00f6bi": 69, "scienc": [1, 13], "scipi": [73, 82], "scope": 71, "scratch": 69, "sd": [2, 77, 85], "se": [78, 85], "seaborn": [71, 72, 73, 75, 78, 79, 80, 82, 83, 84, 85], "seagreen": 83, "seamless": 69, "search": 66, "second": [0, 1, 2, 5, 6, 10, 16, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 83, 84, 85], "section": [70, 71, 73, 74, 75, 76, 78, 84, 85], "see": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 84, 85], "seed": [71, 72, 73, 77, 78, 79, 80, 82, 83, 84], "seen": [71, 84, 85], "select": [77, 83, 84], "self": [75, 83, 85], "semi": 73, "send": [71, 72, 76], "sens": [1, 71, 75, 77], "sensori": [1, 69, 71, 84, 85, 86], "sensory_precis": 55, "separ": [73, 78, 79, 85], "septemb": 76, "sequenc": [17, 40, 58, 62, 65, 69, 71, 75, 77, 78, 83, 85], "sequenti": [74, 75, 76, 77, 78, 79, 81, 83, 85], "seri": [1, 2, 3, 4, 5, 6, 13, 32, 40, 58, 59, 68, 69, 71, 72, 73, 74, 75, 76, 78, 81, 84, 85, 86], "serotonin": 1, "session": 70, "set": [16, 24, 28, 29, 60, 63, 66, 69, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 85], "set_cent": 73, "set_minor_loc": 73, "set_offset": 73, "set_palett": 78, "set_titl": [73, 75, 79], "set_xdata": 73, "set_xlabel": [73, 79, 82], "set_ydata": 73, "set_ylabel": [73, 75, 79, 82, 83], "sever": [1, 76, 85], "sfreq": 81, "shad": 28, "shape": [0, 1, 3, 72, 73, 75, 78, 79, 80, 83, 84], "share": [72, 74], "sharei": 83, "sharex": [71, 73, 75, 83], "she": 77, "shoot": 76, "shortwav": 84, "should": [0, 2, 4, 5, 28, 29, 35, 43, 44, 48, 55, 58, 59, 60, 72, 73, 75, 77, 78, 83, 85], "show": [28, 29, 72, 76, 85], "show_heart_r": 81, "show_posterior": [28, 29, 80], "show_surpris": [28, 29, 80], "show_total_surpris": [29, 74, 76], "shown": [71, 73, 80], "side": [72, 77, 78], "sidecar": 85, "sigma": [55, 71, 72, 73, 78, 84], "sigma_1": [71, 84], "sigma_2": [71, 84], "sigma_mu_g0": 56, "sigma_pi_g0": 56, "sigma_temperatur": 78, "sigma_volatil": 78, "sigmoid": [71, 78, 79, 83, 85], "sigmoid_hgf": 77, "sigmoid_hgf_idata": 77, "sigmoid_inverse_temperatur": 79, "signal": [0, 70, 80], "sim": [2, 71, 78, 80, 84], "similar": [74, 76, 81, 83, 85], "similarli": [72, 76], "simpl": [2, 71, 72, 73, 77, 79, 83, 84, 85, 86], "simpler": [71, 72, 85], "simplest": [71, 77], "simplex": 1, "simpli": [0, 72, 73, 78, 79, 84, 85], "simplifi": [80, 84], "simpul": 71, "simul": [1, 55, 56, 71, 72, 73, 77, 80, 84, 85, 86], "simultan": 78, "sin": [72, 73, 80], "sinc": [71, 80], "singl": [6, 72, 73, 83, 85], "sinusoid": [72, 80], "sinusoid_linear_hgf": 80, "sinusoid_nonlinear_hgf": 80, "situat": [1, 71, 72, 75, 77, 78, 83], "size": [1, 5, 71, 72, 74, 76, 78, 79, 82, 84], "skew": 75, "slightli": [76, 77, 85], "slope": [71, 80], "slow": [83, 85], "smaller": [78, 79], "smooth": 70, "smoother": 73, "sn": [71, 72, 73, 75, 78, 79, 80, 82, 83, 84, 85], "snoma": 84, "snow": 84, "so": [72, 74, 76, 77, 80, 84, 85], "sofmax": [30, 31], "softmax": [5, 6, 69, 77, 83], "softwar": 69, "solar": 84, "sole": 83, "solid": 85, "solut": 73, "some": [37, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 84], "someth": [71, 72, 73, 77, 80, 82, 85], "sometim": [72, 76, 77, 84, 85], "sort": 73, "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69], "space": [65, 73, 76, 78, 80], "sparsiti": 77, "special": 83, "specif": [1, 43, 69, 70, 71, 72, 74, 75, 77, 78, 80, 83], "specifi": [2, 60, 71, 75, 80, 81, 83], "spike": 76, "spiral": 73, "spiral_data": 73, "split": [72, 77], "springer": [40, 58, 59, 86], "sqrt": [13, 28, 73, 82], "squar": [73, 78], "stabil": 1, "stabl": 76, "stable_conting": 83, "stack": 73, "staffel": [84, 86], "standard": [0, 28, 29, 36, 52, 55, 56, 65, 70, 71, 72, 73, 74, 75, 76, 77, 78, 82, 84, 85], "start": [2, 3, 4, 62, 65, 71, 73, 75, 77, 78, 83, 84, 85], "stat": [73, 82], "state": [1, 6, 18, 19, 20, 22, 32, 40, 41, 43, 44, 47, 48, 50, 51, 56, 58, 60, 61, 63, 64, 69, 70, 71, 72, 73, 74, 76, 77, 78, 83, 84, 85], "static": [45, 53, 57], "statist": [0, 13, 26, 28, 29, 40, 58, 59, 68, 71, 72, 77, 78, 79, 82, 86], "statproofbook": 11, "std": [80, 82], "steep": 80, "steeper": 80, "stefan": 86, "step": [1, 5, 6, 17, 36, 37, 40, 44, 62, 65, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 83, 84, 85], "stephan": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 86], "still": [75, 83], "stim_1": 85, "stim_2": 85, "stimuli": [77, 78, 85], "stimulu": [77, 78, 85], "stochast": [71, 73, 75, 80, 84], "storag": 84, "store": [44, 49, 69, 72, 77, 78], "str": [2, 3, 4, 16, 28, 40, 45, 53, 54, 57, 58, 59, 61, 62, 65], "straight": 71, "straightforward": [71, 73, 83], "straigthforwar": 84, "strenght": 23, "strength": [16, 35, 42, 43, 44, 48, 49, 60, 71, 74, 80], "string": 72, "structur": [0, 16, 17, 28, 29, 35, 42, 48, 49, 62, 65, 66, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 84, 85], "student": 73, "studi": [1, 70, 76, 78], "sub": [0, 72, 74], "subject": [1, 85], "subplot": [71, 73, 75, 79, 80, 82, 83, 85], "subtl": 85, "success": 79, "suffici": [0, 13, 26, 28, 29, 40, 58, 59, 68, 71, 72, 77, 82, 86], "sufficient_statistics_from_observ": 73, "sufficient_statistics_from_paramet": 73, "sufficient_stats_fn": [58, 59], "suggest": [73, 85], "suitabl": 83, "sum": [5, 29, 34, 43, 44, 69, 74, 75, 76, 77, 78, 81, 83, 84, 85], "sum_": [11, 44, 75, 77], "summari": [2, 74, 76, 77, 79, 81, 85], "summer": 84, "support": [5, 69, 71, 72, 73], "suppos": 80, "sure": [75, 77, 83, 85], "surfac": 84, "surpris": [0, 2, 3, 4, 5, 6, 9, 10, 14, 28, 29, 30, 31, 32, 33, 34, 68, 69, 72, 75, 81, 83, 84, 85], "surprise_fn": 75, "suspect": 76, "swgdn": 84, "swiss": 76, "switch": [73, 74, 85], "swtdn": 84, "sy": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "systol": 81, "t": [1, 31, 36, 37, 42, 43, 44, 46, 49, 50, 51, 59, 69, 71, 72, 73, 74, 75, 77, 78, 80, 83, 84, 85], "t2m": 84, "tailor": [74, 75], "take": [0, 1, 71, 74, 77, 78, 84, 85], "tapa": 69, "target": [62, 69, 73, 84], "target_accept": [78, 79, 85], "task": [69, 70, 72, 74, 77, 78, 81, 85], "techniqu": 79, "tediou": 76, "tem": 84, "temp": 78, "temperatur": [5, 6, 31, 69, 77, 78, 79, 83, 84], "temporari": 54, "ten": 86, "tensor": [74, 75, 76, 77, 78, 79, 81, 83, 85], "term": [1, 44, 71, 72, 77, 80, 86], "terminologi": [75, 78], "test": [78, 79], "text": [9, 77, 80], "th": 78, "than": [16, 37, 71, 75, 76, 78, 79, 80], "thank": [78, 85], "thecomput": 70, "thei": [0, 69, 72, 74, 75, 76, 77, 78, 79, 85], "them": [71, 73, 77, 83, 84], "theoret": [70, 84], "theori": [1, 71, 85], "therefor": [32, 40, 71, 72, 73, 75, 76, 77, 78, 80, 83, 84, 85], "thestrup": [1, 86], "theta": [72, 73, 80], "theta_": 72, "theta_1": [72, 80], "theta_2": 80, "thi": [0, 1, 2, 4, 5, 6, 13, 16, 17, 27, 28, 29, 32, 35, 37, 40, 44, 54, 58, 59, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "thing": [75, 78, 84], "think": [71, 77], "third": [1, 5, 6, 72, 74, 76], "those": [69, 72, 74, 77, 78], "three": [0, 5, 6, 16, 28, 29, 71, 72, 75, 82, 83], "three_level_hgf": [76, 81], "three_level_hgf_idata": [74, 76], "three_level_trajectori": 85, "three_levels_binary_hgf": [74, 85], "three_levels_continuous_hgf": 76, "three_levels_continuous_hgf_bi": 76, "three_levels_hgf": [29, 74], "three_levels_idata": 85, "threshold": 80, "through": [0, 69, 70, 71, 72, 77, 78, 80, 84, 85], "thu": [1, 84], "ticker": 73, "tight": 76, "tight_layout": [73, 76], "tile": [71, 73, 83, 84], "tim": 86, "time": [1, 2, 3, 4, 5, 6, 13, 30, 31, 32, 33, 34, 40, 41, 43, 44, 58, 59, 62, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 84, 85, 86], "time_step": [2, 3, 4, 5, 6, 41, 77, 83], "timeseri": [2, 28, 29, 76, 84], "timestep": 80, "titl": [1, 71, 73, 75, 78, 80, 82, 85], "tmp": 76, "to_numpi": [84, 85], "to_panda": [74, 76, 77], "toa": 84, "togeth": [29, 74, 76, 77, 85], "tolist": 79, "tomkin": 81, "tonic": [2, 5, 6, 16, 43, 44, 71, 76, 78, 79, 80, 82, 83, 84, 85], "tonic_drift": [16, 28, 29, 74, 80, 81], "tonic_drift_1": [5, 6], "tonic_drift_2": [5, 6], "tonic_drift_3": [5, 6], "tonic_volatil": [16, 28, 29, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "tonic_volatility_1": [5, 6, 76, 81], "tonic_volatility_2": [2, 5, 6, 74, 75, 76, 77, 78, 79, 81, 85], "tonic_volatility_3": [5, 6, 74, 76], "too": 83, "took": [74, 76, 77, 78, 79, 81, 83, 85], "tool": 78, "toolbox": [69, 71, 73, 76, 77], "top": [0, 28, 29, 69, 71, 73, 74, 76, 77, 82, 84], "total": [43, 44, 71, 74, 76, 77, 78, 79, 80, 81, 83, 84, 85], "total_gaussian_surpris": [2, 81], "total_surpris": 77, "toussaint": 69, "toward": [83, 85], "trace": 80, "track": [40, 71, 72, 73, 74, 77, 82, 84, 85], "tradition": 77, "trajectori": [0, 6, 26, 28, 29, 68, 69, 73, 77, 78, 79, 81, 82, 83, 84], "trajectories_df": 68, "transform": [23, 71, 72, 74, 77, 78, 80, 85], "transit": [63, 70, 73], "translat": 69, "transmiss": 84, "transpar": 72, "treat": 78, "tree": 72, "tree_util": [75, 83], "tri": [72, 74, 77, 85], "trial": [1, 71, 76, 77, 83, 85], "trigger": [0, 69, 71, 84], "tristan": 80, "trivial": 77, "true": [9, 14, 28, 29, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 85], "try": [76, 77, 80, 82, 83, 84, 85], "tune": [2, 74, 76, 77, 78, 79, 81, 83, 85], "tupl": [2, 3, 4, 17, 20, 22, 23, 24, 28, 29, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 72, 77, 80], "turn": [70, 71, 84], "tutori": [69, 71, 73, 74, 77, 78, 79, 80, 83, 84, 85], "two": [0, 1, 5, 6, 11, 16, 28, 29, 36, 37, 62, 69, 71, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84], "two_armed_bandit_hgf": 83, "two_armed_bandit_missing_inputs_hgf": 83, "two_bandits_logp": 83, "two_level_hgf": 76, "two_level_hgf_idata": [74, 76, 78, 79, 85], "two_level_trajectori": 85, "two_levels_binary_hgf": [74, 78, 79, 85], "two_levels_continuous_hgf": [76, 84], "two_levels_hgf": [74, 85], "two_levels_idata": 85, "type": [2, 3, 4, 5, 16, 17, 30, 31, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 56, 57, 58, 59, 60, 61, 64, 65, 72, 75, 77, 78, 83, 85], "typic": 72, "u": [29, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "u1": 80, "u2": 80, "u_0": 72, "u_0_prob": 72, "u_1": [71, 72, 80], "u_1_prob": 72, "u_2": [71, 80], "u_loss_arm1": 83, "u_loss_arm2": 83, "u_win_arm1": 83, "u_win_arm2": 83, "ucl": 11, "uk": 11, "uncertain": [1, 72], "uncertainti": [1, 28, 29, 69, 70, 71, 73, 83, 84, 85, 86], "under": [1, 6, 9, 10, 14, 30, 31, 37, 52, 54, 56, 69, 71, 74, 76, 77, 78, 85, 86], "undergo": [77, 78], "underli": [10, 72, 74, 75, 76, 77, 79, 80], "underpin": [71, 73], "understand": [1, 71, 80, 85], "underw": 77, "unexpect": [73, 74, 76], "uniform": [74, 79, 85], "union": [30, 31, 56, 60], "uniqu": [71, 72, 85], "unit": [2, 3, 4, 62, 78], "univari": [8, 58, 59, 73], "univariate_hgf": 73, "univers": [11, 80, 86], "unlik": [71, 76], "unnecessari": 73, "unobserv": 83, "until": [75, 80], "up": [28, 29, 69, 71, 76, 84], "updat": [1, 13, 17, 25, 61, 62, 63, 65, 67, 69, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85], "update_binary_input_par": 42, "update_continuous_input_par": 42, "update_fn": 72, "update_fn1": 72, "update_fn2": 72, "update_sequ": [17, 62, 65, 72, 83], "update_typ": 65, "upon": 71, "upper": [71, 72, 79, 83], "upper_bound": 15, "url": [1, 11, 86], "us": [0, 1, 2, 3, 4, 5, 6, 16, 25, 27, 28, 35, 36, 37, 40, 43, 44, 56, 69, 71, 72, 78, 79, 80, 81, 82, 83, 84, 85, 86], "usd": [28, 29], "user": [71, 77], "userwarn": 76, "usual": [0, 40, 58, 62, 71, 72, 79, 82], "util": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "v": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "valid": [4, 13, 32, 72, 74, 76, 78, 85, 86], "valu": [0, 2, 5, 6, 10, 16, 17, 28, 29, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 64, 69, 70, 73, 74, 76, 77, 78, 79, 81, 82, 83, 85], "valuat": 76, "value_children": [18, 20, 22, 23, 24, 69, 72, 76, 80, 82, 83, 84, 85], "value_coupling_children": [16, 42, 49], "value_coupling_par": [16, 42, 49], "value_par": [18, 20, 23, 24, 72], "vape": 71, "var_nam": [2, 74, 77, 78, 79, 85], "vari": [70, 71, 73, 77, 78, 80], "variabl": [1, 13, 43, 62, 67, 69, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85], "varianc": [5, 6, 16, 69, 70, 71, 72, 73, 76, 84], "variat": [0, 1, 72, 73], "varieti": 72, "variou": [1, 72, 73, 84], "vartheta": 73, "vector": [2, 3, 4, 5, 16, 40, 56, 58, 73, 75, 77, 78, 79, 83, 85], "vectorized_logp": 5, "vehtari": [78, 86], "verbelen": 86, "veri": [1, 71, 76, 78, 81, 84], "versatil": 84, "version": [1, 17, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "via": [71, 72], "view": 83, "visibl": 76, "visual": [0, 27, 28, 29, 69, 82, 84, 85], "vizualis": 73, "vjp": 75, "vjp_custom_op": 75, "vjp_custom_op_jax": 75, "vjp_fn": 75, "vjpcustomop": 75, "vol": 69, "volatil": [0, 1, 2, 5, 6, 16, 17, 28, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 53, 54, 57, 58, 59, 60, 61, 64, 65, 69, 70, 73, 74, 76, 77, 78, 79, 80, 82, 83, 85], "volatile_conting": 83, "volatility_children": [18, 20, 23, 24, 72, 76, 82, 84], "volatility_coupl": [16, 28, 29, 35, 48, 74, 81], "volatility_coupling_1": [5, 6], "volatility_coupling_2": [5, 6], "volatility_coupling_children": [16, 42, 49], "volatility_coupling_par": [16, 42, 49], "volatility_par": [18, 20, 23, 24, 72], "volum": 1, "vopa": 44, "vope": 71, "vstack": 75, "w": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "w_a": 83, "w_b": 83, "wa": [40, 65, 69, 72, 74, 75, 76, 77, 80, 83, 85], "waad": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 86], "wagenmak": [78, 86], "wagner": [71, 74, 79], "wai": [1, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 84, 85], "waic": 86, "wait": 40, "walk": [1, 5, 6, 16, 43, 80, 83], "want": [1, 2, 61, 72, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85], "warmup": 2, "warn": [74, 75, 76, 77, 78, 79, 81, 83, 85], "watermark": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "wave": [72, 80], "we": [0, 1, 2, 40, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "weak_typ": [9, 14], "weber": [0, 1, 13, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 69, 71, 72, 73, 84, 86], "weigh": [73, 84], "weight": [1, 56, 69, 71, 72, 73, 85], "weigth": 56, "well": [1, 62, 72, 73, 79, 84, 85], "were": [71, 73, 74, 77, 78, 79, 83, 85], "what": [40, 72, 75, 76, 77, 80, 83, 84, 85], "when": [2, 4, 5, 6, 32, 43, 54, 58, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 84, 85], "where": [0, 3, 4, 5, 6, 14, 28, 29, 31, 40, 43, 44, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84], "wherea": 81, "whether": 28, "which": [1, 5, 6, 13, 43, 65, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 84, 85], "while": [71, 72, 73, 77, 78, 80, 81, 83, 84, 85], "whithout": 73, "whole": [71, 73, 83], "wide": [16, 74], "width": [28, 29, 73], "wiki": [7, 8], "wikipedia": [7, 8], "william": 11, "wilson": [79, 86], "win": 83, "win_arm1": 83, "win_arm2": 83, "wind": 86, "wine": 83, "wishart": 11, "within": 1, "without": [1, 43, 58, 64, 70, 72, 77, 78, 80], "won": 74, "word": [72, 74, 76, 85], "work": [27, 70, 75, 77, 78, 83, 85], "workflow": [78, 85], "workshop": 84, "world": [71, 73, 77, 85], "worri": [74, 76], "worth": 78, "would": [74, 76, 78, 80, 83, 84], "wpenni": 11, "wrap": [0, 74, 75, 76, 83], "write": [75, 77, 80, 84, 85], "written": 73, "www": [1, 11, 86], "x": [9, 12, 13, 14, 15, 59, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84], "x1": [71, 80], "x2": [71, 80], "x3": 80, "x64": 85, "x_": [71, 74, 84], "x_0": [6, 76], "x_0_expected_mean": 77, "x_0_expected_precis": 77, "x_0_mean": 77, "x_0_precis": 77, "x_0_surpris": [74, 76, 77], "x_1": [6, 71, 73, 80, 84], "x_1_1": 71, "x_1_2": 71, "x_1_3": 71, "x_1_expected_mean": 77, "x_1_expected_precis": 77, "x_1_mean": 77, "x_1_precis": 77, "x_1_surpris": [74, 76, 77], "x_2": [6, 71, 73, 80, 84], "x_2_1": 71, "x_2_2": 71, "x_2_3": 71, "x_2_surpris": [74, 76], "x_3": [6, 80], "x_b": 43, "x_i": 73, "xaxi": 73, "xflr6": 27, "xi": [13, 59, 72, 73, 75], "xi_": [13, 72, 73], "xi_1": [72, 73], "xi_2": 73, "xi_k": 72, "xi_x": [13, 73], "xlabel": [71, 73, 75, 77, 80, 84, 85], "xlim": 73, "xy": 73, "y": [13, 69, 73, 77, 79, 83, 85], "y1": 75, "y2": 75, "yaxi": 73, "ye": 80, "year": [1, 84, 86], "yet": 83, "ylabel": [71, 73, 75, 80, 84, 85], "ylim": 73, "you": [1, 61, 69, 70, 72, 73, 75, 77, 80, 83, 84, 85], "your": [1, 84, 85], "z": [73, 78], "z_": 78, "zero": 80, "zip": [71, 73, 79, 82, 83, 85], "zoom": 80, "zorder": [72, 75, 79], "zurich": 70, "\u03c9_2": 2}, "titles": ["API", "How to cite?", "pyhgf.distribution.HGFDistribution", "pyhgf.distribution.HGFLogpGradOp", "pyhgf.distribution.HGFPointwise", "pyhgf.distribution.hgf_logp", "pyhgf.distribution.logp", "pyhgf.math.MultivariateNormal", "pyhgf.math.Normal", "pyhgf.math.binary_surprise", "pyhgf.math.binary_surprise_finite_precision", "pyhgf.math.dirichlet_kullback_leibler", "pyhgf.math.gaussian_density", "pyhgf.math.gaussian_predictive_distribution", "pyhgf.math.gaussian_surprise", "pyhgf.math.sigmoid", "pyhgf.model.HGF", "pyhgf.model.Network", "pyhgf.model.add_binary_state", "pyhgf.model.add_categorical_state", "pyhgf.model.add_continuous_state", "pyhgf.model.add_dp_state", "pyhgf.model.add_ef_state", "pyhgf.model.get_couplings", "pyhgf.model.insert_nodes", "pyhgf.model.update_parameters", "pyhgf.plots.plot_correlations", "pyhgf.plots.plot_network", "pyhgf.plots.plot_nodes", "pyhgf.plots.plot_trajectories", "pyhgf.response.binary_softmax", "pyhgf.response.binary_softmax_inverse_temperature", "pyhgf.response.first_level_binary_surprise", "pyhgf.response.first_level_gaussian_surprise", "pyhgf.response.total_gaussian_surprise", "pyhgf.updates.posterior.categorical.categorical_state_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "pyhgf.updates.posterior.exponential.posterior_update_exponential_family_dynamic", "pyhgf.updates.prediction.binary.binary_state_node_prediction", "pyhgf.updates.prediction.continuous.continuous_node_prediction", "pyhgf.updates.prediction.continuous.predict_mean", "pyhgf.updates.prediction.continuous.predict_precision", "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "pyhgf.updates.prediction_error.dirichlet.create_cluster", "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "pyhgf.updates.prediction_error.dirichlet.get_candidate", "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "pyhgf.updates.prediction_error.dirichlet.update_cluster", "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_dynamic", "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_fixed", "pyhgf.utils.add_edges", "pyhgf.utils.add_parent", "pyhgf.utils.beliefs_propagation", "pyhgf.utils.fill_categorical_state_node", "pyhgf.utils.get_input_idxs", "pyhgf.utils.get_update_sequence", "pyhgf.utils.list_branches", "pyhgf.utils.remove_node", "pyhgf.utils.to_pandas", "PyHGF: A Neural Network Library for Predictive Coding", "Learn", "Introduction to the Generalised Hierarchical Gaussian Filter", "Creating and manipulating networks of probabilistic nodes", "Generalised Bayesian Filtering of exponential family distributions", "The binary Hierarchical Gaussian Filter", "The categorical Hierarchical Gaussian Filter", "The continuous Hierarchical Gaussian Filter", "Using custom response models", "Hierarchical Bayesian modelling with probabilistic neural networks", "Recovering computational parameters from observed behaviours", "Non-linear value coupling between continuous state nodes", "Example 1: Bayesian filtering of cardiac volatility", "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions", "Example 3: A multi-armed bandit task with independent rewards and punishments", "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter", "Zurich CPC II: Application to reinforcement learning", "References"], "titleterms": {"1": [81, 84], "2": [82, 84], "3": [83, 84], "4": 84, "5": 84, "7": 85, "8": 85, "A": [69, 83], "The": [69, 70, 71, 72, 74, 75, 76, 84, 85], "acknowledg": 69, "activ": 80, "ad": 71, "adapt": 73, "add": [74, 76], "add_binary_st": 18, "add_categorical_st": 19, "add_continuous_st": 20, "add_dp_stat": 21, "add_edg": 60, "add_ef_st": 22, "add_par": 61, "api": 0, "applic": 85, "arm": [79, 83], "ascend": 72, "assign": 72, "attribut": 72, "autoregress": 71, "bandit": [79, 83], "bayesian": [73, 78, 81, 83], "behavior": 77, "behaviour": [79, 85], "belief": [71, 83, 85], "beliefs_propag": 62, "between": [80, 84], "bias": 85, "binari": [0, 41, 46, 47, 72, 74, 77, 85], "binary_finite_state_node_prediction_error": 46, "binary_softmax": 30, "binary_softmax_inverse_temperatur": 31, "binary_state_node_predict": 41, "binary_state_node_prediction_error": 47, "binary_surpris": 9, "binary_surprise_finite_precis": 10, "cardiac": 81, "case": [70, 72], "categor": [0, 35, 48, 75], "categorical_state_prediction_error": 48, "categorical_state_upd": 35, "cite": 1, "clusters_likelihood": 52, "code": 69, "collect": 73, "comparison": [78, 85], "comput": [78, 79], "configur": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "content": 0, "continu": [0, 36, 37, 38, 39, 42, 43, 44, 49, 50, 51, 72, 76, 80], "continuous_node_posterior_upd": 36, "continuous_node_posterior_update_ehgf": 37, "continuous_node_predict": 42, "continuous_node_prediction_error": 49, "continuous_node_value_prediction_error": 50, "continuous_node_volatility_prediction_error": 51, "correl": 76, "coupl": [71, 72, 80, 84], "cpc": [84, 85], "creat": [72, 74, 75, 76, 77], "create_clust": 53, "custom": [72, 77], "data": [74, 76], "dataset": [75, 78, 83], "decis": [77, 83], "deriv": 81, "descend": 72, "detail": 72, "differ": 85, "dirichlet": [0, 45, 52, 53, 54, 55, 56, 57], "dirichlet_kullback_leibl": 11, "dirichlet_node_predict": 45, "dirichlet_node_prediction_error": 54, "distribut": [0, 2, 3, 4, 5, 6, 73, 78, 82], "doe": 69, "drift": 71, "dynam": [71, 72, 73], "edg": 72, "error": [0, 71], "estim": 82, "exampl": [81, 82, 83], "exercis": [70, 84, 85], "exponenti": [0, 40, 58, 59, 73], "famili": [0, 73], "fill_categorical_state_nod": 63, "filter": [69, 70, 71, 73, 74, 75, 76, 81, 84], "first_level_binary_surpris": 32, "first_level_gaussian_surpris": 33, "fit": [69, 74, 75, 76, 85], "fix": [73, 74, 76], "forward": 75, "frequenc": 80, "from": [77, 79, 83], "function": [0, 72, 77, 80], "gaussian": [69, 70, 71, 73, 74, 75, 76, 82, 84], "gaussian_dens": 12, "gaussian_predictive_distribut": 13, "gaussian_surpris": 14, "gener": [69, 71, 84], "generalis": [71, 73, 84], "get": 69, "get_candid": 55, "get_coupl": 23, "get_input_idx": 64, "get_update_sequ": 65, "glossari": [71, 77], "go": 85, "graph": 78, "group": 78, "heart": 81, "hgf": [16, 74, 76, 77, 85], "hgf_logp": 5, "hgfdistribut": 2, "hgflogpgradop": 3, "hgfpointwis": 4, "hierarch": [69, 70, 71, 73, 74, 75, 76, 78, 84], "how": [1, 69], "i": 84, "ii": 85, "implement": 72, "import": 74, "independ": 83, "infer": [75, 78, 79, 83], "input": 72, "insert_nod": 24, "instal": 69, "instantan": 81, "introduct": [71, 84], "invers": 84, "known": 82, "kown": 82, "learn": [70, 74, 76, 85], "level": [74, 76, 78, 85], "librari": 69, "likely_cluster_propos": 56, "linear": 80, "list_branch": 66, "load": 81, "logp": 6, "manipul": 72, "math": [0, 7, 8, 9, 10, 11, 12, 13, 14, 15], "mcmc": [74, 75, 76], "mean": 82, "miss": 72, "model": [0, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 69, 71, 74, 75, 76, 77, 78, 81, 84, 85], "modifi": 72, "multi": 83, "multivari": [72, 73], "multivariatenorm": 7, "network": [17, 69, 71, 72, 75, 78], "neural": [69, 78], "new": 77, "next": 85, "node": [0, 71, 72, 75, 80, 84], "non": [73, 80], "normal": 8, "nu": 73, "observ": [77, 79], "one": 79, "optim": 85, "paramet": [74, 76, 77, 79, 83, 85], "particip": 83, "physiolog": 81, "plot": [0, 26, 27, 28, 29, 74, 76, 78, 81], "plot_correl": 26, "plot_network": 27, "plot_nod": 28, "plot_trajectori": 29, "posterior": [0, 35, 36, 37, 38, 39, 40, 78, 85], "posterior_update_exponential_family_dynam": 40, "posterior_update_mean_continuous_nod": 38, "posterior_update_precision_continuous_nod": 39, "practic": 84, "precis": 82, "predict": [0, 41, 42, 43, 44, 45, 69, 71, 80, 85], "predict_mean": 43, "predict_precis": 44, "prediction_error": [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59], "prediction_error_update_exponential_family_dynam": 58, "prediction_error_update_exponential_family_fix": 59, "preprocess": 81, "probabilist": [72, 75, 78, 84], "process": [0, 71], "propag": 71, "punish": 83, "pyhgf": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69], "random": [71, 84, 85], "rate": 81, "real": 83, "record": 81, "recov": [77, 79], "recoveri": [79, 83], "rectifi": 80, "refer": [69, 86], "reinforc": 85, "relu": 80, "remove_nod": 67, "rescorla": 85, "respons": [0, 30, 31, 32, 33, 34, 77, 83], "reward": 83, "rl": 85, "rule": [77, 83], "sampl": [74, 75, 76, 78, 85], "sequenc": 72, "sigmoid": 15, "signal": 81, "simul": [75, 78, 79, 83], "solut": [84, 85], "start": 69, "state": [0, 75, 80], "static": 72, "stationari": 73, "statist": 73, "step": 0, "structur": 83, "suffici": 73, "surpris": [74, 76, 77], "system": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "tabl": 0, "task": [79, 83], "theori": [70, 72, 73], "three": [74, 76, 85], "through": 73, "time": [72, 82, 83], "to_panda": 68, "total_gaussian_surpris": 34, "track": 80, "trajectori": [74, 76, 85], "transit": 75, "tutori": 70, "two": [74, 76, 85], "unit": 80, "unknown": 82, "unkown": 82, "unobserv": 72, "updat": [0, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 71, 72, 83], "update_clust": 57, "update_paramet": 25, "us": [70, 73, 74, 75, 76, 77], "util": [0, 60, 61, 62, 63, 64, 65, 66, 67, 68], "valu": [71, 72, 80, 84], "vari": [72, 82], "visual": [72, 74, 76, 78, 79], "volatil": [71, 72, 81, 84], "wagner": 85, "walk": [71, 84], "weather": 84, "where": 85, "work": [69, 72], "world": 84, "zurich": [84, 85]}}) \ No newline at end of file +Search.setIndex({"alltitles": {"": [[84, "exercise1.1"], [84, "exercise1.2"], [84, "exercise1.3"], [84, "exercise1.4"], [84, "exercise1.5"], [84, "exercise1.6"], [85, "exercise2.1"], [85, "exercise2.2"]], "API": [[0, "api"]], "Acknowledgments": [[69, "acknowledgments"]], "Add data": [[74, "add-data"], [74, "id4"], [76, "add-data"], [76, "id3"]], "Adding a drift to the random walk": [[71, "adding-a-drift-to-the-random-walk"]], "Autoregressive processes": [[71, "autoregressive-processes"]], "Bayesian inference": [[83, "bayesian-inference"]], "Beliefs trajectories": [[85, "beliefs-trajectories"]], "Biased random": [[85, "biased-random"]], "Binary nodes": [[0, "binary-nodes"]], "Binary state nodes": [[0, "binary-state-nodes"]], "Categorical nodes": [[0, "categorical-nodes"]], "Categorical state nodes": [[0, "categorical-state-nodes"]], "Continuous nodes": [[0, "continuous-nodes"], [0, "id1"]], "Continuous state nodes": [[0, "continuous-state-nodes"]], "Continuous value coupling": [[72, "continuous-value-coupling"]], "Continuous volatility coupling": [[72, "continuous-volatility-coupling"]], "Coupling with binary nodes": [[72, "coupling-with-binary-nodes"]], "Create the model": [[74, "create-the-model"], [74, "id3"], [76, "create-the-model"], [76, "id2"]], "Creating a new response function": [[77, "creating-a-new-response-function"]], "Creating a new response function: the binary surprise": [[77, "creating-a-new-response-function-the-binary-surprise"]], "Creating and manipulating networks of probabilistic nodes": [[72, null]], "Creating custom update functions": [[72, "creating-custom-update-functions"]], "Creating custom update sequences": [[72, "creating-custom-update-sequences"]], "Creating probabilistic nodes": [[72, "creating-probabilistic-nodes"]], "Creating the decision rule": [[77, "creating-the-decision-rule"]], "Creating the model": [[74, "creating-the-model"], [74, "id7"], [76, "creating-the-model"], [76, "id5"]], "Creating the probabilistic network": [[75, "creating-the-probabilistic-network"]], "Decision rule": [[83, "decision-rule"]], "Dirichlet processes": [[0, "dirichlet-processes"]], "Dirichlet state nodes": [[0, "dirichlet-state-nodes"]], "Distribution": [[0, "distribution"]], "Dynamic assignation of update sequences": [[72, "dynamic-assignation-of-update-sequences"]], "Dynamic beliefs updating": [[71, "dynamic-beliefs-updating"]], "Example 1: Bayesian filtering of cardiac volatility": [[81, null]], "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions": [[82, null]], "Example 3: A multi-armed bandit task with independent rewards and punishments": [[83, null]], "Exercises": [[70, "exercises"]], "Exponential family": [[0, "exponential-family"], [0, "id2"]], "Filtering the Sufficient Statistics of a Non-Stationary Distribution": [[73, "filtering-the-sufficient-statistics-of-a-non-stationary-distribution"]], "Filtering the Sufficient Statistics of a Stationary Distribution": [[73, "filtering-the-sufficient-statistics-of-a-stationary-distribution"]], "Fitting behaviours to different RL models": [[85, "fitting-behaviours-to-different-rl-models"]], "Fitting the binary HGF with fixed parameters": [[74, "fitting-the-binary-hgf-with-fixed-parameters"]], "Fitting the continuous HGF with fixed parameters": [[76, "fitting-the-continuous-hgf-with-fixed-parameters"]], "Fitting the model forwards": [[75, "fitting-the-model-forwards"]], "Frequency tracking": [[80, "frequency-tracking"]], "Gaussian Random Walks": [[71, "gaussian-random-walks"], [84, "gaussian-random-walks"]], "Gaussian distribution": [[73, "gaussian-distribution"]], "Generalised Bayesian Filtering of exponential family distributions": [[73, null]], "Generalised Bayesian Filtering: using a fixed \\nu": [[73, "generalised-bayesian-filtering-using-a-fixed-nu"], [73, "id3"]], "Getting started": [[69, "getting-started"]], "Glossary": [[71, "glossary"], [77, "glossary"]], "Group-level inference": [[78, "group-level-inference"]], "Hierarchical Bayesian modelling with probabilistic neural networks": [[78, null]], "How does it work?": [[69, "how-does-it-work"]], "How to cite?": [[1, null]], "Imports": [[74, "imports"]], "Inference from the simulated behaviours": [[79, "inference-from-the-simulated-behaviours"]], "Inference using MCMC sampling": [[75, "inference-using-mcmc-sampling"]], "Installation": [[69, "installation"]], "Introduction to the Generalised Hierarchical Gaussian Filter": [[71, null]], "Kown mean, unknown precision": [[82, "kown-mean-unknown-precision"]], "Learn": [[70, null]], "Learning parameters with MCMC sampling": [[74, "learning-parameters-with-mcmc-sampling"], [76, "learning-parameters-with-mcmc-sampling"]], "Loading and preprocessing physiological recording": [[81, "loading-and-preprocessing-physiological-recording"]], "Math": [[0, "math"]], "Model": [[0, "model"], [81, "model"]], "Model comparison": [[78, "model-comparison"], [85, "model-comparison"]], "Model fitting": [[69, "model-fitting"]], "Model inversion: the generalized Hierarchical Gaussian Filter": [[84, "model-inversion-the-generalized-hierarchical-gaussian-filter"]], "Modifying the attributes": [[72, "modifying-the-attributes"]], "Modifying the edges": [[72, "modifying-the-edges"]], "Multivariate Gaussian distribution": [[73, "multivariate-gaussian-distribution"]], "Multivariate coupling": [[72, "multivariate-coupling"]], "Non-linear predictions": [[80, "non-linear-predictions"]], "Non-linear value coupling between continuous state nodes": [[80, null]], "Parameter recovery": [[83, "parameter-recovery"]], "Parameters optimization": [[85, "parameters-optimization"]], "Plot correlation": [[76, "plot-correlation"]], "Plot the computational graph": [[78, "plot-the-computational-graph"]], "Plot the signal with instantaneous heart rate derivations": [[81, "plot-the-signal-with-instantaneous-heart-rate-derivations"]], "Plot trajectories": [[74, "plot-trajectories"], [74, "id5"], [76, "plot-trajectories"], [76, "id4"]], "Plots": [[0, "plots"]], "Posterior predictive sampling": [[85, "posterior-predictive-sampling"]], "Posterior updates": [[0, "posterior-updates"]], "Practice: Filtering the worlds weather": [[84, "practice-filtering-the-worlds-weather"]], "Prediction error steps": [[0, "prediction-error-steps"]], "Prediction steps": [[0, "prediction-steps"]], "Preprocessing": [[81, "preprocessing"]], "Probabilistic coupling between nodes": [[84, "probabilistic-coupling-between-nodes"]], "PyHGF: A Neural Network Library for Predictive Coding": [[69, null]], "ReLU (rectified linear unit) activation function": [[80, "relu-rectified-linear-unit-activation-function"]], "Real-time decision and belief updating": [[83, "real-time-decision-and-belief-updating"]], "Recovering HGF parameters from the observed behaviors": [[77, "recovering-hgf-parameters-from-the-observed-behaviors"]], "Recovering computational parameters from observed behaviours": [[79, null]], "References": [[69, "references"], [86, null]], "Rescorla-Wagner": [[85, "rescorla-wagner"]], "Response": [[0, "response"]], "Sampling": [[74, "sampling"], [74, "id9"], [76, "sampling"], [76, "id7"], [78, "sampling"]], "Simulate a dataset": [[78, "simulate-a-dataset"], [83, "simulate-a-dataset"]], "Simulate behaviours from a one-armed bandit task": [[79, "simulate-behaviours-from-a-one-armed-bandit-task"]], "Simulate responses from a participant": [[83, "simulate-responses-from-a-participant"]], "Simulating a dataset": [[75, "simulating-a-dataset"]], "Solution to Exercise 1": [[84, "solution-exercise1.1"]], "Solution to Exercise 2": [[84, "solution-exercise1.2"]], "Solution to Exercise 3": [[84, "solution-exercise1.3"]], "Solution to Exercise 4": [[84, "solution-exercise1.4"]], "Solution to Exercise 5": [[84, "solution-exercise1.5"]], "Solution to Exercise 7": [[85, "solution-exercise2.1"]], "Solution to Exercise 8": [[85, "solution-exercise2.2"]], "Solutions": [[84, "solutions"], [85, "solutions"]], "Static assignation of update sequences": [[72, "static-assignation-of-update-sequences"]], "Surprise": [[74, "surprise"], [74, "id6"], [76, "surprise"]], "System configuration": [[71, "system-configuration"], [72, "system-configuration"], [73, "system-configuration"], [74, "system-configuration"], [75, "system-configuration"], [76, "system-configuration"], [77, "system-configuration"], [78, "system-configuration"], [79, "system-configuration"], [80, "system-configuration"], [81, "system-configuration"], [82, "system-configuration"], [83, "system-configuration"], [84, "system-configuration"], [85, "system-configuration"]], "Table of Contents": [[0, null]], "Task structure": [[83, "task-structure"]], "The Generalized Hierarchical Gaussian Filter": [[69, "the-generalized-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter": [[70, "the-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter in a network of predictive nodes": [[71, "the-hierarchical-gaussian-filter-in-a-network-of-predictive-nodes"]], "The binary HGF": [[85, "the-binary-hgf"]], "The binary Hierarchical Gaussian Filter": [[74, null]], "The case of multivariate ascendency": [[72, "the-case-of-multivariate-ascendency"]], "The case of multivariate descendency": [[72, "the-case-of-multivariate-descendency"]], "The categorical Hierarchical Gaussian Filter": [[75, null]], "The categorical state node": [[75, "the-categorical-state-node"]], "The categorical state-transition node": [[75, "the-categorical-state-transition-node"]], "The continuous Hierarchical Gaussian Filter": [[76, null]], "The generative model": [[71, "the-generative-model"], [84, "the-generative-model"]], "The propagation of prediction and prediction errors": [[71, "the-propagation-of-prediction-and-prediction-errors"]], "The three-level binary Hierarchical Gaussian Filter": [[74, "the-three-level-binary-hierarchical-gaussian-filter"]], "The three-level continuous Hierarchical Gaussian Filter": [[76, "the-three-level-continuous-hierarchical-gaussian-filter"]], "The two-level binary Hierarchical Gaussian Filter": [[74, "the-two-level-binary-hierarchical-gaussian-filter"]], "The two-level continuous Hierarchical Gaussian Filter": [[76, "the-two-level-continuous-hierarchical-gaussian-filter"]], "Theory": [[70, "theory"], [73, "theory"]], "Theory and implementation details": [[72, "theory-and-implementation-details"]], "Three-level HGF": [[85, "three-level-hgf"]], "Three-level model": [[74, "three-level-model"], [76, "three-level-model"]], "Time-varying update sequences": [[72, "time-varying-update-sequences"]], "Tutorials": [[70, "tutorials"]], "Two-level HGF": [[85, "two-level-hgf"]], "Two-level model": [[74, "two-level-model"], [76, "two-level-model"]], "Unkown mean, known precision": [[82, "unkown-mean-known-precision"]], "Unkown mean, unknown precision": [[82, "unkown-mean-unknown-precision"]], "Update functions": [[72, "update-functions"]], "Updates functions": [[0, "updates-functions"]], "Use cases": [[70, "use-cases"]], "Using a dynamically adapted \\nu through a collection of Hierarchical Gaussian Filters": [[73, "using-a-dynamically-adapted-nu-through-a-collection-of-hierarchical-gaussian-filters"], [73, "id4"]], "Using custom response models": [[77, null]], "Using the learned parameters": [[74, "using-the-learned-parameters"], [74, "id10"], [76, "using-the-learned-parameters"], [76, "id8"]], "Utils": [[0, "utils"]], "Value coupling": [[71, "value-coupling"], [72, "value-coupling"], [84, "value-coupling"]], "Visualization of the posterior distributions": [[78, "visualization-of-the-posterior-distributions"]], "Visualizing parameters recovery": [[79, "visualizing-parameters-recovery"]], "Visualizing probabilistic networks": [[72, "visualizing-probabilistic-networks"]], "Visualizing the model": [[74, "visualizing-the-model"], [74, "id8"], [76, "visualizing-the-model"], [76, "id6"]], "Volatility coupling": [[71, "volatility-coupling"], [72, "volatility-coupling"], [84, "volatility-coupling"]], "Where to go next?": [[85, "where-to-go-next"]], "Working with missing or unobserved input sequences": [[72, "working-with-missing-or-unobserved-input-sequences"]], "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter": [[84, null]], "Zurich CPC II: Application to reinforcement learning": [[85, null]], "pyhgf.distribution.HGFDistribution": [[2, null]], "pyhgf.distribution.HGFLogpGradOp": [[3, null]], "pyhgf.distribution.HGFPointwise": [[4, null]], "pyhgf.distribution.hgf_logp": [[5, null]], "pyhgf.distribution.logp": [[6, null]], "pyhgf.math.MultivariateNormal": [[7, null]], "pyhgf.math.Normal": [[8, null]], "pyhgf.math.binary_surprise": [[9, null]], "pyhgf.math.binary_surprise_finite_precision": [[10, null]], "pyhgf.math.dirichlet_kullback_leibler": [[11, null]], "pyhgf.math.gaussian_density": [[12, null]], "pyhgf.math.gaussian_predictive_distribution": [[13, null]], "pyhgf.math.gaussian_surprise": [[14, null]], "pyhgf.math.sigmoid": [[15, null]], "pyhgf.model.HGF": [[16, null]], "pyhgf.model.Network": [[17, null]], "pyhgf.model.add_binary_state": [[18, null]], "pyhgf.model.add_categorical_state": [[19, null]], "pyhgf.model.add_continuous_state": [[20, null]], "pyhgf.model.add_dp_state": [[21, null]], "pyhgf.model.add_ef_state": [[22, null]], "pyhgf.model.get_couplings": [[23, null]], "pyhgf.model.insert_nodes": [[24, null]], "pyhgf.model.update_parameters": [[25, null]], "pyhgf.plots.plot_correlations": [[26, null]], "pyhgf.plots.plot_network": [[27, null]], "pyhgf.plots.plot_nodes": [[28, null]], "pyhgf.plots.plot_trajectories": [[29, null]], "pyhgf.response.binary_softmax": [[30, null]], "pyhgf.response.binary_softmax_inverse_temperature": [[31, null]], "pyhgf.response.first_level_binary_surprise": [[32, null]], "pyhgf.response.first_level_gaussian_surprise": [[33, null]], "pyhgf.response.total_gaussian_surprise": [[34, null]], "pyhgf.updates.posterior.categorical.categorical_state_update": [[35, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update": [[36, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf": [[37, null]], "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node": [[38, null]], "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node": [[39, null]], "pyhgf.updates.posterior.exponential.posterior_update_exponential_family_dynamic": [[40, null]], "pyhgf.updates.prediction.binary.binary_state_node_prediction": [[41, null]], "pyhgf.updates.prediction.continuous.continuous_node_prediction": [[42, null]], "pyhgf.updates.prediction.continuous.predict_mean": [[43, null]], "pyhgf.updates.prediction.continuous.predict_precision": [[44, null]], "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction": [[45, null]], "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error": [[46, null]], "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error": [[47, null]], "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error": [[48, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error": [[49, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error": [[50, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error": [[51, null]], "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood": [[52, null]], "pyhgf.updates.prediction_error.dirichlet.create_cluster": [[53, null]], "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error": [[54, null]], "pyhgf.updates.prediction_error.dirichlet.get_candidate": [[55, null]], "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal": [[56, null]], "pyhgf.updates.prediction_error.dirichlet.update_cluster": [[57, null]], "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_dynamic": [[58, null]], "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_fixed": [[59, null]], "pyhgf.utils.add_edges": [[60, null]], "pyhgf.utils.add_parent": [[61, null]], "pyhgf.utils.beliefs_propagation": [[62, null]], "pyhgf.utils.fill_categorical_state_node": [[63, null]], "pyhgf.utils.get_input_idxs": [[64, null]], "pyhgf.utils.get_update_sequence": [[65, null]], "pyhgf.utils.list_branches": [[66, null]], "pyhgf.utils.remove_node": [[67, null]], "pyhgf.utils.to_pandas": [[68, null]]}, "docnames": ["api", "cite", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp", "generated/pyhgf.distribution/pyhgf.distribution.logp", "generated/pyhgf.math/pyhgf.math.MultivariateNormal", "generated/pyhgf.math/pyhgf.math.Normal", "generated/pyhgf.math/pyhgf.math.binary_surprise", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler", "generated/pyhgf.math/pyhgf.math.gaussian_density", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution", "generated/pyhgf.math/pyhgf.math.gaussian_surprise", "generated/pyhgf.math/pyhgf.math.sigmoid", "generated/pyhgf.model/pyhgf.model.HGF", "generated/pyhgf.model/pyhgf.model.Network", "generated/pyhgf.model/pyhgf.model.add_binary_state", "generated/pyhgf.model/pyhgf.model.add_categorical_state", "generated/pyhgf.model/pyhgf.model.add_continuous_state", "generated/pyhgf.model/pyhgf.model.add_dp_state", "generated/pyhgf.model/pyhgf.model.add_ef_state", "generated/pyhgf.model/pyhgf.model.get_couplings", "generated/pyhgf.model/pyhgf.model.insert_nodes", "generated/pyhgf.model/pyhgf.model.update_parameters", "generated/pyhgf.plots/pyhgf.plots.plot_correlations", "generated/pyhgf.plots/pyhgf.plots.plot_network", "generated/pyhgf.plots/pyhgf.plots.plot_nodes", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories", "generated/pyhgf.response/pyhgf.response.binary_softmax", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family_dynamic", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster", "generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_dynamic", "generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_fixed", "generated/pyhgf.utils/pyhgf.utils.add_edges", "generated/pyhgf.utils/pyhgf.utils.add_parent", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence", "generated/pyhgf.utils/pyhgf.utils.list_branches", "generated/pyhgf.utils/pyhgf.utils.remove_node", "generated/pyhgf.utils/pyhgf.utils.to_pandas", "index", "learn", "notebooks/0.1-Theory", "notebooks/0.2-Creating_networks", "notebooks/0.3-Generalised_filtering", "notebooks/1.1-Binary_HGF", "notebooks/1.2-Categorical_HGF", "notebooks/1.3-Continuous_HGF", "notebooks/2-Using_custom_response_functions", "notebooks/3-Multilevel_HGF", "notebooks/4-Parameter_recovery", "notebooks/5-Non_linear_value_coupling", "notebooks/Example_1_Heart_rate_variability", "notebooks/Example_2_Input_node_volatility_coupling", "notebooks/Example_3_Multi_armed_bandit", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter", "notebooks/Exercise_2_Bayesian_reinforcement_learning", "references"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["api.rst", "cite.md", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.rst", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.rst", "generated/pyhgf.distribution/pyhgf.distribution.logp.rst", "generated/pyhgf.math/pyhgf.math.MultivariateNormal.rst", "generated/pyhgf.math/pyhgf.math.Normal.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.rst", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.rst", "generated/pyhgf.math/pyhgf.math.gaussian_density.rst", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.rst", "generated/pyhgf.math/pyhgf.math.gaussian_surprise.rst", "generated/pyhgf.math/pyhgf.math.sigmoid.rst", "generated/pyhgf.model/pyhgf.model.HGF.rst", "generated/pyhgf.model/pyhgf.model.Network.rst", "generated/pyhgf.model/pyhgf.model.add_binary_state.rst", "generated/pyhgf.model/pyhgf.model.add_categorical_state.rst", "generated/pyhgf.model/pyhgf.model.add_continuous_state.rst", "generated/pyhgf.model/pyhgf.model.add_dp_state.rst", "generated/pyhgf.model/pyhgf.model.add_ef_state.rst", "generated/pyhgf.model/pyhgf.model.get_couplings.rst", "generated/pyhgf.model/pyhgf.model.insert_nodes.rst", "generated/pyhgf.model/pyhgf.model.update_parameters.rst", "generated/pyhgf.plots/pyhgf.plots.plot_correlations.rst", "generated/pyhgf.plots/pyhgf.plots.plot_network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_nodes.rst", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.rst", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.rst", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.rst", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.rst", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family_dynamic.rst", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.rst", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.rst", "generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_dynamic.rst", "generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_fixed.rst", "generated/pyhgf.utils/pyhgf.utils.add_edges.rst", "generated/pyhgf.utils/pyhgf.utils.add_parent.rst", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.rst", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.rst", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs.rst", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence.rst", "generated/pyhgf.utils/pyhgf.utils.list_branches.rst", "generated/pyhgf.utils/pyhgf.utils.remove_node.rst", "generated/pyhgf.utils/pyhgf.utils.to_pandas.rst", "index.md", "learn.md", "notebooks/0.1-Theory.ipynb", "notebooks/0.2-Creating_networks.ipynb", "notebooks/0.3-Generalised_filtering.ipynb", "notebooks/1.1-Binary_HGF.ipynb", "notebooks/1.2-Categorical_HGF.ipynb", "notebooks/1.3-Continuous_HGF.ipynb", "notebooks/2-Using_custom_response_functions.ipynb", "notebooks/3-Multilevel_HGF.ipynb", "notebooks/4-Parameter_recovery.ipynb", "notebooks/5-Non_linear_value_coupling.ipynb", "notebooks/Example_1_Heart_rate_variability.ipynb", "notebooks/Example_2_Input_node_volatility_coupling.ipynb", "notebooks/Example_3_Multi_armed_bandit.ipynb", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.ipynb", "notebooks/Exercise_2_Bayesian_reinforcement_learning.ipynb", "references.md"], "indexentries": {"__init__() (pyhgf.distribution.hgfdistribution method)": [[2, "pyhgf.distribution.HGFDistribution.__init__", false]], "__init__() (pyhgf.distribution.hgflogpgradop method)": [[3, "pyhgf.distribution.HGFLogpGradOp.__init__", false]], "__init__() (pyhgf.distribution.hgfpointwise method)": [[4, "pyhgf.distribution.HGFPointwise.__init__", false]], "__init__() (pyhgf.math.multivariatenormal method)": [[7, "pyhgf.math.MultivariateNormal.__init__", false]], "__init__() (pyhgf.math.normal method)": [[8, "pyhgf.math.Normal.__init__", false]], "__init__() (pyhgf.model.hgf method)": [[16, "pyhgf.model.HGF.__init__", false]], "__init__() (pyhgf.model.network method)": [[17, "pyhgf.model.Network.__init__", false]], "add_binary_state() (in module pyhgf.model)": [[18, "pyhgf.model.add_binary_state", false]], "add_categorical_state() (in module pyhgf.model)": [[19, "pyhgf.model.add_categorical_state", false]], "add_continuous_state() (in module pyhgf.model)": [[20, "pyhgf.model.add_continuous_state", false]], "add_dp_state() (in module pyhgf.model)": [[21, "pyhgf.model.add_dp_state", false]], "add_edges() (in module pyhgf.utils)": [[60, "pyhgf.utils.add_edges", false]], "add_ef_state() (in module pyhgf.model)": [[22, "pyhgf.model.add_ef_state", false]], "add_parent() (in module pyhgf.utils)": [[61, "pyhgf.utils.add_parent", false]], "beliefs_propagation() (in module pyhgf.utils)": [[62, "pyhgf.utils.beliefs_propagation", false]], "binary_finite_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[46, "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", false]], "binary_softmax() (in module pyhgf.response)": [[30, "pyhgf.response.binary_softmax", false]], "binary_softmax_inverse_temperature() (in module pyhgf.response)": [[31, "pyhgf.response.binary_softmax_inverse_temperature", false]], "binary_state_node_prediction() (in module pyhgf.updates.prediction.binary)": [[41, "pyhgf.updates.prediction.binary.binary_state_node_prediction", false]], "binary_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[47, "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", false]], "binary_surprise() (in module pyhgf.math)": [[9, "pyhgf.math.binary_surprise", false]], "binary_surprise_finite_precision() (in module pyhgf.math)": [[10, "pyhgf.math.binary_surprise_finite_precision", false]], "categorical_state_prediction_error() (in module pyhgf.updates.prediction_error.categorical)": [[48, "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", false]], "categorical_state_update() (in module pyhgf.updates.posterior.categorical)": [[35, "pyhgf.updates.posterior.categorical.categorical_state_update", false]], "clusters_likelihood() (in module pyhgf.updates.prediction_error.dirichlet)": [[52, "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", false]], "continuous_node_posterior_update() (in module pyhgf.updates.posterior.continuous)": [[36, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", false]], "continuous_node_posterior_update_ehgf() (in module pyhgf.updates.posterior.continuous)": [[37, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", false]], "continuous_node_prediction() (in module pyhgf.updates.prediction.continuous)": [[42, "pyhgf.updates.prediction.continuous.continuous_node_prediction", false]], "continuous_node_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[49, "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", false]], "continuous_node_value_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[50, "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", false]], "continuous_node_volatility_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[51, "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", false]], "create_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[53, "pyhgf.updates.prediction_error.dirichlet.create_cluster", false]], "decision rule": [[77, "term-Decision-rule", true]], "dirichlet_kullback_leibler() (in module pyhgf.math)": [[11, "pyhgf.math.dirichlet_kullback_leibler", false]], "dirichlet_node_prediction() (in module pyhgf.updates.prediction.dirichlet)": [[45, "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", false]], "dirichlet_node_prediction_error() (in module pyhgf.updates.prediction_error.dirichlet)": [[54, "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", false]], "fill_categorical_state_node() (in module pyhgf.utils)": [[63, "pyhgf.utils.fill_categorical_state_node", false]], "first_level_binary_surprise() (in module pyhgf.response)": [[32, "pyhgf.response.first_level_binary_surprise", false]], "first_level_gaussian_surprise() (in module pyhgf.response)": [[33, "pyhgf.response.first_level_gaussian_surprise", false]], "gaussian random walk": [[71, "term-Gaussian-Random-Walk", true]], "gaussian_density() (in module pyhgf.math)": [[12, "pyhgf.math.gaussian_density", false]], "gaussian_predictive_distribution() (in module pyhgf.math)": [[13, "pyhgf.math.gaussian_predictive_distribution", false]], "gaussian_surprise() (in module pyhgf.math)": [[14, "pyhgf.math.gaussian_surprise", false]], "get_candidate() (in module pyhgf.updates.prediction_error.dirichlet)": [[55, "pyhgf.updates.prediction_error.dirichlet.get_candidate", false]], "get_couplings() (in module pyhgf.model)": [[23, "pyhgf.model.get_couplings", false]], "get_input_idxs() (in module pyhgf.utils)": [[64, "pyhgf.utils.get_input_idxs", false]], "get_update_sequence() (in module pyhgf.utils)": [[65, "pyhgf.utils.get_update_sequence", false]], "hgf (class in pyhgf.model)": [[16, "pyhgf.model.HGF", false]], "hgf_logp() (in module pyhgf.distribution)": [[5, "pyhgf.distribution.hgf_logp", false]], "hgfdistribution (class in pyhgf.distribution)": [[2, "pyhgf.distribution.HGFDistribution", false]], "hgflogpgradop (class in pyhgf.distribution)": [[3, "pyhgf.distribution.HGFLogpGradOp", false]], "hgfpointwise (class in pyhgf.distribution)": [[4, "pyhgf.distribution.HGFPointwise", false]], "insert_nodes() (in module pyhgf.model)": [[24, "pyhgf.model.insert_nodes", false]], "likely_cluster_proposal() (in module pyhgf.updates.prediction_error.dirichlet)": [[56, "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", false]], "list_branches() (in module pyhgf.utils)": [[66, "pyhgf.utils.list_branches", false]], "logp() (in module pyhgf.distribution)": [[6, "pyhgf.distribution.logp", false]], "module": [[38, "module-pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", false], [39, "module-pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", false]], "multivariatenormal (class in pyhgf.math)": [[7, "pyhgf.math.MultivariateNormal", false]], "network (class in pyhgf.model)": [[17, "pyhgf.model.Network", false]], "node": [[71, "term-Node", true]], "normal (class in pyhgf.math)": [[8, "pyhgf.math.Normal", false]], "perceptual model": [[77, "term-Perceptual-model", true]], "plot_correlations() (in module pyhgf.plots)": [[26, "pyhgf.plots.plot_correlations", false]], "plot_network() (in module pyhgf.plots)": [[27, "pyhgf.plots.plot_network", false]], "plot_nodes() (in module pyhgf.plots)": [[28, "pyhgf.plots.plot_nodes", false]], "plot_trajectories() (in module pyhgf.plots)": [[29, "pyhgf.plots.plot_trajectories", false]], "posterior_update_exponential_family_dynamic() (in module pyhgf.updates.posterior.exponential)": [[40, "pyhgf.updates.posterior.exponential.posterior_update_exponential_family_dynamic", false]], "predict_mean() (in module pyhgf.updates.prediction.continuous)": [[43, "pyhgf.updates.prediction.continuous.predict_mean", false]], "predict_precision() (in module pyhgf.updates.prediction.continuous)": [[44, "pyhgf.updates.prediction.continuous.predict_precision", false]], "prediction": [[71, "term-Prediction", true]], "prediction error": [[71, "term-Prediction-error", true]], "prediction_error_update_exponential_family_dynamic() (in module pyhgf.updates.prediction_error.exponential)": [[58, "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_dynamic", false]], "prediction_error_update_exponential_family_fixed() (in module pyhgf.updates.prediction_error.exponential)": [[59, "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_fixed", false]], "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node": [[38, "module-pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", false]], "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node": [[39, "module-pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", false]], "remove_node() (in module pyhgf.utils)": [[67, "pyhgf.utils.remove_node", false]], "response function": [[77, "term-Response-function", true]], "response model": [[77, "term-Response-model", true]], "sigmoid() (in module pyhgf.math)": [[15, "pyhgf.math.sigmoid", false]], "to_pandas() (in module pyhgf.utils)": [[68, "pyhgf.utils.to_pandas", false]], "total_gaussian_surprise() (in module pyhgf.response)": [[34, "pyhgf.response.total_gaussian_surprise", false]], "update": [[71, "term-Update", true]], "update_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[57, "pyhgf.updates.prediction_error.dirichlet.update_cluster", false]], "update_parameters() (in module pyhgf.model)": [[25, "pyhgf.model.update_parameters", false]], "vape": [[71, "term-VAPE", true]], "vope": [[71, "term-VOPE", true]]}, "objects": {"pyhgf.distribution": [[2, 0, 1, "", "HGFDistribution"], [3, 0, 1, "", "HGFLogpGradOp"], [4, 0, 1, "", "HGFPointwise"], [5, 2, 1, "", "hgf_logp"], [6, 2, 1, "", "logp"]], "pyhgf.distribution.HGFDistribution": [[2, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFLogpGradOp": [[3, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFPointwise": [[4, 1, 1, "", "__init__"]], "pyhgf.math": [[7, 0, 1, "", "MultivariateNormal"], [8, 0, 1, "", "Normal"], [9, 2, 1, "", "binary_surprise"], [10, 2, 1, "", "binary_surprise_finite_precision"], [11, 2, 1, "", "dirichlet_kullback_leibler"], [12, 2, 1, "", "gaussian_density"], [13, 2, 1, "", "gaussian_predictive_distribution"], [14, 2, 1, "", "gaussian_surprise"], [15, 2, 1, "", "sigmoid"]], "pyhgf.math.MultivariateNormal": [[7, 1, 1, "", "__init__"]], "pyhgf.math.Normal": [[8, 1, 1, "", "__init__"]], "pyhgf.model": [[16, 0, 1, "", "HGF"], [17, 0, 1, "", "Network"], [18, 2, 1, "", "add_binary_state"], [19, 2, 1, "", "add_categorical_state"], [20, 2, 1, "", "add_continuous_state"], [21, 2, 1, "", "add_dp_state"], [22, 2, 1, "", "add_ef_state"], [23, 2, 1, "", "get_couplings"], [24, 2, 1, "", "insert_nodes"], [25, 2, 1, "", "update_parameters"]], "pyhgf.model.HGF": [[16, 1, 1, "", "__init__"]], "pyhgf.model.Network": [[17, 1, 1, "", "__init__"]], "pyhgf.plots": [[26, 2, 1, "", "plot_correlations"], [27, 2, 1, "", "plot_network"], [28, 2, 1, "", "plot_nodes"], [29, 2, 1, "", "plot_trajectories"]], "pyhgf.response": [[30, 2, 1, "", "binary_softmax"], [31, 2, 1, "", "binary_softmax_inverse_temperature"], [32, 2, 1, "", "first_level_binary_surprise"], [33, 2, 1, "", "first_level_gaussian_surprise"], [34, 2, 1, "", "total_gaussian_surprise"]], "pyhgf.updates.posterior.categorical": [[35, 2, 1, "", "categorical_state_update"]], "pyhgf.updates.posterior.continuous": [[36, 2, 1, "", "continuous_node_posterior_update"], [37, 2, 1, "", "continuous_node_posterior_update_ehgf"], [38, 3, 0, "-", "posterior_update_mean_continuous_node"], [39, 3, 0, "-", "posterior_update_precision_continuous_node"]], "pyhgf.updates.posterior.exponential": [[40, 2, 1, "", "posterior_update_exponential_family_dynamic"]], "pyhgf.updates.prediction.binary": [[41, 2, 1, "", "binary_state_node_prediction"]], "pyhgf.updates.prediction.continuous": [[42, 2, 1, "", "continuous_node_prediction"], [43, 2, 1, "", "predict_mean"], [44, 2, 1, "", "predict_precision"]], "pyhgf.updates.prediction.dirichlet": [[45, 2, 1, "", "dirichlet_node_prediction"]], "pyhgf.updates.prediction_error.binary": [[46, 2, 1, "", "binary_finite_state_node_prediction_error"], [47, 2, 1, "", "binary_state_node_prediction_error"]], "pyhgf.updates.prediction_error.categorical": [[48, 2, 1, "", "categorical_state_prediction_error"]], "pyhgf.updates.prediction_error.continuous": [[49, 2, 1, "", "continuous_node_prediction_error"], [50, 2, 1, "", "continuous_node_value_prediction_error"], [51, 2, 1, "", "continuous_node_volatility_prediction_error"]], "pyhgf.updates.prediction_error.dirichlet": [[52, 2, 1, "", "clusters_likelihood"], [53, 2, 1, "", "create_cluster"], [54, 2, 1, "", "dirichlet_node_prediction_error"], [55, 2, 1, "", "get_candidate"], [56, 2, 1, "", "likely_cluster_proposal"], [57, 2, 1, "", "update_cluster"]], "pyhgf.updates.prediction_error.exponential": [[58, 2, 1, "", "prediction_error_update_exponential_family_dynamic"], [59, 2, 1, "", "prediction_error_update_exponential_family_fixed"]], "pyhgf.utils": [[60, 2, 1, "", "add_edges"], [61, 2, 1, "", "add_parent"], [62, 2, 1, "", "beliefs_propagation"], [63, 2, 1, "", "fill_categorical_state_node"], [64, 2, 1, "", "get_input_idxs"], [65, 2, 1, "", "get_update_sequence"], [66, 2, 1, "", "list_branches"], [67, 2, 1, "", "remove_node"], [68, 2, 1, "", "to_pandas"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function", "3": "py:module"}, "terms": {"": [1, 2, 17, 18, 19, 20, 22, 28, 29, 32, 33, 34, 43, 60, 61, 62, 65, 69, 71, 72, 73, 74, 76, 77, 79, 80, 81, 83, 84, 85], "0": [0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 28, 29, 30, 31, 43, 56, 60, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "00": [81, 84, 85], "000000": 85, "000000e": 85, "00039": [1, 69, 86], "0039": 76, "00825": [1, 69, 86], "01": [73, 79, 80, 81, 84, 85], "013": 77, "01375": 74, "015": 85, "016": 86, "016216": 77, "018": [77, 84], "0183": 76, "02": [73, 84, 85], "027": 2, "03": [78, 80, 84], "030": [13, 40, 58, 59], "038": 2, "04": [28, 29, 76, 84], "05": [72, 80, 83, 85], "050744": 85, "051065": 85, "06": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "060": 86, "061": 84, "064361": 77, "065": 2, "067450": 77, "068": 86, "068983": 77, "0717": 76, "077038": 77, "08": 86, "08008": 79, "09045": 74, "09206": [1, 69], "1": [1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 28, 29, 30, 31, 36, 37, 40, 41, 42, 43, 44, 46, 49, 50, 51, 54, 58, 59, 60, 62, 65, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 85, 86], "10": [1, 13, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86], "100": [73, 79, 81], "1000": [2, 71, 72, 73, 80, 81, 82, 84], "10000": [16, 71], "1007": [13, 40, 58, 59, 86], "1016": [69, 86], "1017": 86, "1049": 77, "109": 85, "109306": 85, "10937": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 86], "11": [2, 73, 74, 77, 86], "1106": 76, "1118": 76, "112": 85, "113": 85, "114": 86, "117590": [69, 86], "12": [2, 28, 29, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "1224": 86, "123": [71, 72, 73, 78, 79, 82, 83, 84, 85], "1239": 86, "124": 84, "125": [71, 84], "1251": 86, "1265": 86, "128": [73, 84], "13": [28, 29, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "138": 69, "14": [2, 73, 77, 78], "1413": 86, "1432": 86, "147": 84, "148581": 85, "15": 73, "150": 75, "1500": 72, "16": [2, 73], "160": 83, "161872": 85, "1662": 1, "16625161": 1, "1684": 78, "17": 75, "18": [28, 29, 77, 78], "185465": 77, "1903": 79, "1910": 76, "1938": 78, "196": 84, "1998": 79, "1_000": [74, 76, 77, 78, 79, 81, 83, 85], "1d": [2, 4], "1e1": [28, 29, 74, 76, 81, 84], "1e2": 84, "1e4": [16, 28, 29, 72, 74, 76, 77, 81, 82, 84], "1i": [11, 75], "1rst": 74, "2": [1, 2, 3, 4, 5, 6, 11, 13, 14, 16, 17, 28, 29, 36, 37, 51, 54, 62, 65, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 85, 86], "20": [1, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86], "200": [71, 72, 73, 84], "2000": [72, 78], "20000": [55, 56], "2001": 11, "2010": 76, "2011": [1, 69, 71, 72, 76, 86], "2013": 69, "2014": [1, 69, 71, 72, 78, 84, 86], "2016": [78, 84, 86], "2017": [83, 86], "2019": [79, 84, 86], "202": 74, "2020": [13, 40, 58, 59, 69, 73, 86], "2021": [69, 74, 77, 85, 86], "2023": [0, 1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 71, 72, 84, 86], "2024": [1, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "2025": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "203": 74, "205": 77, "206": 74, "21": 75, "21596": 74, "21629826": 1, "222": 85, "224": 84, "226": [69, 86], "226807": 85, "2305": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 86], "230946": 77, "232583": 77, "233799": 77, "234603": 77, "235004": 77, "238578": 85, "24": 84, "2410": [1, 69], "244": 84, "245": 84, "247": 84, "249": 84, "25": [73, 78, 82], "250": [71, 72, 75, 80, 82, 84], "2516081684": 76, "256": 73, "26": [71, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85], "260191": 77, "2633": 74, "264": 85, "2679": 76, "27": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86], "270900": 77, "27879": 86, "28": 78, "283697": 77, "296556": 77, "2_000": [74, 76, 77, 78, 79, 81, 83, 85], "2_i": 78, "2a2a2a": 75, "2i": [11, 75], "2nd": 74, "3": [2, 3, 4, 5, 13, 16, 17, 28, 29, 40, 58, 59, 62, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 85, 86], "30": [71, 72, 84, 86], "301674": 77, "308": 84, "30963": 76, "31": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "3186": 78, "32": 73, "3200": 78, "333": 73, "3389": [1, 69, 86], "33it": 81, "345082": 85, "345825": 85, "35": 73, "350": 80, "35667497": 9, "38": 78, "387": 84, "389923": 77, "4": [1, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86], "400": [72, 73, 80], "400697": 85, "409": 85, "4093": 76, "416410": 77, "417018e": 85, "42": [56, 80], "428": 85, "43": 80, "45": 72, "458906": 77, "466356": 77, "471469": 77, "472": 84, "474077": 77, "48550": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69], "489": 85, "49547": 86, "4c72b0": [71, 72, 77, 84, 85], "5": [0, 1, 2, 28, 29, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86], "50": [81, 82], "500": [78, 82], "500000": 77, "506923": 77, "507": 77, "510971": 77, "512": 73, "5161": 1, "518301": 77, "52": [13, 40, 58, 59, 86], "520583": 77, "52956": 74, "530355": 77, "530717": 77, "53662109": 78, "536678": 77, "5377": 84, "54": 77, "540697": 77, "548814": 85, "550": 80, "551": 74, "55585": 74, "55a868": [71, 79, 85], "566859": 77, "570303": 85, "578278": 85, "58": [13, 40, 58, 59, 86], "582766": [73, 82], "597": 85, "5d1e51": 85, "6": [29, 71, 72, 73, 74, 78, 79, 82, 83, 84, 85, 86], "60": [78, 79, 81], "600": [72, 73, 80], "602961": 77, "6174": 76, "621047": 85, "622459": 77, "624085": 77, "627284": 77, "631975": 77, "635": 84, "638038": 77, "64": [73, 78], "64919": [13, 40, 58, 59], "650": 80, "66": [79, 85], "680811": 69, "69": 85, "698": 76, "7": [9, 73, 76, 79, 83, 84, 86], "70": 78, "701": 84, "726367": 85, "731660": 77, "73it": 81, "745316": 77, "75": 73, "750": 72, "7554": 86, "766": 2, "776": 2, "781": 77, "7_7": [13, 40, 58, 59], "7f7f7f": 75, "8": [1, 11, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86], "80": 83, "800": [72, 73], "806": 2, "80it": 81, "826717e": 85, "828": 76, "830393": 85, "834867": 77, "850": 80, "865": 84, "866444": 85, "867": 77, "87854": 77, "886": 76, "8992462158203": 69, "9": [11, 28, 29, 71, 73, 75, 77, 81, 85, 86], "90": 72, "900": 72, "903": 76, "910": 76, "9189386": 14, "9297": 76, "931": 84, "937": 77, "938": 2, "944": 2, "946": 77, "95": 73, "950": 80, "964": [76, 85], "965": 76, "9696": 86, "978": [13, 40, 58, 59], "99": 78, "991796": 85, "993221": 85, "998888": 85, "999": 73, "A": [0, 1, 2, 3, 4, 5, 16, 17, 28, 29, 31, 36, 37, 42, 43, 44, 46, 49, 50, 51, 56, 62, 65, 66, 70, 71, 72, 74, 76, 77, 78, 79, 80, 84, 85, 86], "And": 77, "As": [72, 78, 83], "At": [70, 71, 84], "Being": 77, "But": [72, 73, 76, 77, 78, 84], "By": [2, 3, 4, 37, 43, 69, 76, 77], "For": [1, 6, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 64, 71, 72, 77, 79, 80, 84, 85], "If": [1, 2, 3, 4, 16, 28, 29, 43, 60, 66, 71, 75, 77, 78, 80, 83, 85], "In": [1, 13, 40, 58, 59, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86], "It": [1, 16, 35, 48, 60, 71, 72, 73, 76, 77, 79, 80, 82, 83, 85], "NOT": 85, "OR": 84, "On": 77, "One": [72, 74, 76, 85], "Or": 84, "Such": [71, 85], "That": 85, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 73, 77, 78, 79, 80, 81, 82, 83, 86], "Then": [80, 84], "There": [77, 78, 79, 84, 85], "These": [1, 69, 71, 74], "To": [71, 74, 76, 77, 78, 80, 84, 85], "With": [71, 80], "_": [29, 31, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85], "_1": [77, 78], "__init__": [2, 3, 4, 7, 8, 16, 17], "_a": [41, 43, 44], "_b": 41, "_i": 71, "_j": [50, 51], "a_custom_hgf": 72, "aarhu": [80, 84], "aarhus_weather_df": 84, "ab": [1, 79], "aberr": 76, "abil": 79, "abl": [40, 74, 77, 78, 80], "about": [1, 70, 71, 72, 74, 75, 76, 77, 83, 84, 85], "abov": [66, 71, 72, 73, 76, 77, 80, 83, 84, 85], "absenc": [79, 83], "abstract": [1, 86], "ac": 11, "acceler": 76, "accept": [74, 76, 80], "access": [2, 3, 4, 72, 77], "accommod": 1, "accord": [0, 77, 80], "accordingli": [5, 71, 74, 76, 83, 84], "account": [1, 71, 72, 83], "accumul": 62, "accur": [79, 85], "acetylcholin": 1, "achiev": 73, "across": [29, 34, 71, 73, 74, 76, 83], "act": [74, 76, 77, 78], "action": [69, 77, 78, 85], "actionmodel": 77, "activ": [13, 40, 58, 59, 69, 77, 85, 86], "actual": [69, 72, 75, 83, 85], "acycl": 72, "ad": [73, 74, 75, 76, 80, 82, 83, 84], "adapt": [1, 69, 70, 71, 76, 77, 85], "adapt_diag": [74, 76, 77, 78, 79, 81, 83, 85], "add": [18, 19, 20, 21, 22, 60, 61, 69, 71, 80, 83, 84, 85], "add_group": [78, 85], "add_nod": [2, 3, 4, 69, 72, 73, 75, 76, 80, 82, 83, 84, 85], "add_patch": 73, "addit": [2, 3, 4, 5, 6, 72, 76, 77], "addition": [69, 79, 85], "additional_paramet": [18, 19, 20, 21, 22, 25], "additionn": [30, 31, 32, 33, 34], "adjac": 72, "adjacencylist": [17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 60, 61, 62, 64, 67, 72], "adjust": [67, 69, 85], "adopt": [74, 76], "advanc": 70, "advantag": [71, 72, 73, 85], "aesara": [74, 76], "affect": [5, 6, 16, 76, 83, 86], "after": [0, 17, 28, 35, 36, 37, 40, 46, 62, 73, 74, 79, 84, 85], "afterward": [2, 3, 4, 16], "again": [75, 76], "against": 76, "agent": [1, 69, 70, 72, 73, 74, 76, 77, 78, 79, 81, 83, 84, 85], "agnost": 1, "ai": 1, "aim": 76, "air": 84, "aki": 86, "al": [0, 69, 71, 72, 74, 77, 78, 84, 85], "algorithm": [1, 69, 71, 74, 81, 84], "align": [71, 73, 77], "alin": [1, 86], "all": [0, 1, 2, 5, 16, 29, 32, 40, 60, 64, 65, 66, 73, 74, 76, 77, 78, 79, 80, 81, 83, 84, 85], "alloc": 54, "allow": [1, 69, 72, 73, 74, 76, 77, 80, 83, 84], "alon": 84, "along": [5, 85], "alpha": [72, 73, 75, 77, 79, 80, 82, 83, 84, 85], "alpha_": [11, 75, 80], "alpha_1": 11, "alpha_2": 11, "alreadi": [66, 72, 73, 77, 78], "also": [1, 16, 28, 42, 44, 49, 66, 69, 71, 72, 73, 74, 76, 77, 78, 80, 82, 83, 84, 85], "altern": [62, 65, 72, 76, 77, 83, 85], "alternative\u00e6li": 78, "alwai": [54, 73, 75, 78, 79, 83, 84, 85], "among": 77, "amount": 76, "amplitud": 73, "an": [1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 49, 55, 57, 58, 59, 62, 64, 65, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "analys": [1, 85], "analyt": 1, "andrew": 86, "angl": 73, "ani": [0, 1, 36, 37, 46, 64, 66, 70, 71, 73, 74, 75, 76, 77, 78, 80], "anim": 73, "ann": 86, "anna": [1, 86], "anoth": [58, 71, 75, 76, 80, 82, 84, 85], "another_custom_hgf": 72, "answer": 79, "anymor": [43, 71, 73], "anyth": [71, 75], "api": [69, 74, 75, 76, 77, 78, 79, 81, 83, 85], "apont": 69, "appar": 71, "appear": [72, 80], "append": [28, 71, 73, 78, 79, 83, 84, 85], "appli": [17, 62, 65, 70, 72, 73, 75, 77, 78, 79, 83, 84, 85], "applic": [1, 6, 69, 70, 72, 73, 76, 77, 79], "apply_along_axi": 73, "approach": [71, 73, 74, 75, 78, 79], "appropri": 82, "approxim": [1, 37, 69, 71, 72, 73, 84], "april": [76, 86], "ar": [0, 1, 2, 4, 5, 16, 17, 28, 35, 58, 60, 62, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "ar1": [71, 83], "arang": [72, 73, 75, 77, 80, 83, 85], "arbitrari": [2, 72, 77, 80, 84], "arctan2": 73, "area": [28, 84], "arg": [7, 8, 25, 35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 54, 58, 59], "argnum": 83, "argument": [2, 3, 4, 72, 74, 76, 77, 80], "arm": [70, 77, 78, 85], "around": [28, 29, 70, 71, 72, 76, 77, 85], "arrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 35, 43, 44, 47, 50, 52, 55, 56, 62, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 84, 85], "arrang": 84, "arriv": 71, "articl": [1, 86], "artifici": [1, 80], "arviz": [2, 74, 76, 77, 78, 79, 81, 83, 85], "arxiv": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 79, 86], "as_tensor_vari": [75, 83, 85], "asarrai": [75, 83], "ask": [1, 76], "aspect": 75, "assert": [72, 74, 76], "assess": [54, 74, 76, 85], "assign": [62, 75, 83], "associ": [2, 3, 4, 5, 6, 65, 69, 75, 77, 78, 79, 80, 83, 85, 86], "assum": [1, 36, 37, 58, 59, 60, 71, 72, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85], "assumpt": [82, 85], "astyp": 80, "atmospher": 84, "attribut": [1, 2, 3, 4, 16, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 57, 58, 59, 60, 61, 62, 67, 69, 73, 75, 78, 79, 82, 83], "au": 80, "august": [76, 86], "author": [1, 80], "auto": 75, "autoconnect": [43, 71, 80], "autoconnection_strength": [80, 82], "autocorrel": 80, "autom": 84, "automat": [72, 74, 76, 78], "autoregress": 43, "avail": [0, 69, 84], "averag": [73, 74, 84, 85], "avoid": 79, "ax": [26, 28, 29, 71, 72, 73, 75, 79, 80, 82, 83, 85], "axi": [5, 71, 73, 78], "axvlin": 83, "az": [2, 74, 75, 76, 77, 78, 79, 81, 83, 85], "b": [41, 43, 69, 73, 80, 83], "back": [43, 71, 78], "backgroud": 28, "backslash": 1, "backward": [72, 73], "bad": 78, "badg": 70, "bandit": [70, 77, 78, 85], "bank": 76, "base": [1, 56, 71, 74, 75, 76, 77, 78, 79, 81, 83, 85], "batch": [5, 83], "bay": 1, "bayesian": [1, 69, 70, 71, 74, 75, 76, 77, 85, 86], "becaus": [71, 72, 74, 75, 76, 80, 83, 84], "becom": [71, 73], "been": [40, 65, 71, 72, 73, 75, 76, 77, 78, 84, 85], "befor": [0, 28, 40, 65, 71, 72, 73, 76, 77, 78, 79, 83, 84], "beforehand": [76, 85], "begin": [9, 13, 70, 71, 73, 77, 80, 85], "behav": [1, 73, 74, 76, 80, 84], "behavior": [1, 85, 86], "behaviour": [5, 6, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83], "behind": [70, 71, 84], "being": [40, 71, 72, 73, 74, 78, 80, 81, 85], "belief": [0, 6, 17, 28, 56, 62, 69, 70, 72, 73, 76, 77, 78, 79, 80, 84], "beliefs_propag": [17, 83], "belong": [66, 73], "below": [0, 71, 74, 75, 77, 80, 84, 85], "bernoulli": [9, 85], "best": [1, 55, 76, 80, 81, 85], "beta": [83, 85], "better": [37, 76, 77, 78, 79, 84, 85], "between": [0, 1, 5, 6, 11, 16, 41, 60, 61, 62, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 83, 85], "beyond": 71, "bia": [78, 85, 86], "biased_random": 85, "biased_random_idata": 85, "biased_random_model": 85, "big": 71, "binari": [2, 3, 4, 5, 6, 9, 10, 16, 18, 29, 30, 31, 32, 35, 48, 63, 69, 70, 71, 75, 76, 78, 79, 83], "binary_hgf": 85, "binary_input_upd": [35, 48], "binary_paramet": [63, 75], "binary_precis": [16, 29, 74], "binary_softmax": [77, 85], "binary_softmax_inverse_temperatur": [69, 78, 79], "binary_states_idx": 63, "binary_surpris": [77, 83], "bind": [69, 72], "binomi": [72, 77, 78, 79, 83], "bio": 1, "biolog": [1, 69], "bit": [76, 78], "bivari": 73, "bivariate_hgf": 73, "bivariate_norm": 73, "bla": [74, 75, 76, 77, 78, 79, 81, 83, 85], "blackjax": 77, "blank": 75, "block": [71, 74, 76, 83], "blog": 75, "blue": [77, 80], "bollmann": 69, "bool": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 28, 29, 30, 31, 52, 55, 56, 62], "bool_": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 52, 55, 56, 62], "boolean": [35, 62, 75, 76, 85], "boom": 86, "both": [1, 43, 70, 71, 72, 75, 77, 78, 80, 82, 83, 84, 85], "bottom": [29, 69, 71, 84], "brain": 1, "branch": [54, 66, 69, 77, 83], "branch_list": 66, "break": 84, "briefli": 85, "broad": 75, "broadcast": [5, 78], "brodersen": [1, 69, 86], "broken": 76, "brown": [83, 86], "bucklei": 86, "build": [70, 71, 74, 76, 80, 84], "built": [69, 72, 74, 76, 84, 85], "burst": 72, "bv": 69, "c": [1, 13, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 69, 74, 75, 76, 77, 78, 79, 81, 83, 85, 86], "c44e52": [71, 73, 77, 79, 85], "c65e161": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "ca": 80, "calcul": [73, 78, 80], "call": [0, 35, 71, 74, 76, 77, 78, 83, 84, 85], "callabl": [0, 2, 3, 4, 5, 6, 20, 24, 58, 59, 60, 62, 65, 77], "cambridg": 86, "can": [0, 1, 2, 3, 4, 5, 6, 16, 60, 61, 62, 65, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "candid": [52, 54, 55, 56, 83], "cannot": [16, 72, 73, 83], "capabl": [71, 80], "capitalis": 71, "captur": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "capture_output": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "cardiac": [70, 76], "carlo": [1, 74, 76, 85], "carri": 85, "carryov": 62, "case": [9, 13, 71, 73, 75, 76, 77, 78, 80, 81, 83, 85], "categor": [16, 19, 63, 70, 73, 78, 83], "categori": [10, 73, 75, 83], "categorical_hgf": 75, "categorical_idata": 75, "categorical_surpris": 75, "caus": 37, "cbo9781139087759": 86, "cdot": 80, "cedric": 86, "cell": [71, 76, 84], "censor": 79, "censored_volatil": 79, "centr": [75, 76], "central": [71, 72, 76, 80, 85], "certain": [1, 71, 72], "chain": [1, 2, 74, 75, 76, 77, 78, 79, 81, 83, 84, 85], "cham": 86, "chanc": 83, "chance_conting": 83, "chang": [71, 72, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85], "channel": 81, "chaotic": 83, "check": [76, 78], "chf": [28, 29], "chi": 73, "chi2": 73, "chi2_val": 73, "child": [0, 54, 64, 71, 72, 80, 84], "children": [0, 16, 17, 28, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 60, 64, 65, 66, 69, 71, 72, 80], "children_idx": 60, "children_input": 28, "choic": 72, "cholinerg": [69, 86], "choos": [73, 76, 83], "chose": [31, 54, 73, 77, 83], "chosen": 83, "chri": 1, "christoph": [1, 86], "chunck": 80, "ci": [28, 29], "circl": 77, "circumst": 37, "citi": 84, "clarifi": 78, "clariti": [73, 76, 85], "class": [0, 2, 3, 4, 7, 8, 16, 17, 27, 28, 29, 58, 59, 72, 73, 74, 75, 76, 77, 78, 83, 85], "classic": [76, 85], "cldtot": 84, "clear": [77, 84], "clearli": [72, 77], "clock": 80, "close": [73, 77, 79], "closer": 80, "cloud": 84, "cloudi": 84, "cluster": [52, 53, 54, 55, 56, 57], "cm": 82, "cmap": [75, 79], "co": 73, "code": [1, 17, 70, 71, 72, 73, 77, 78, 80, 84, 85], "coeffici": [71, 79], "cognit": [1, 69, 81, 86], "colab": [70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "collect": [0, 75], "colleg": 11, "collin": [79, 86], "color": [28, 71, 72, 73, 75, 77, 79, 80, 82, 83, 84, 85], "column": 62, "com": [69, 84], "combin": [1, 43, 71, 72], "come": [1, 71, 73, 77, 78, 80, 84], "command": 85, "common": [1, 72, 73, 75], "commonli": [77, 80, 84], "commun": [13, 71], "compar": [1, 40, 69, 76, 78, 85], "compare_df": 85, "comparison": [4, 70, 79], "compat": [2, 72, 74, 75, 76, 77, 78], "compil": 69, "complet": [71, 84, 85], "complex": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 52, 55, 56, 62, 70, 71, 72, 77, 84], "complexifi": 71, "compli": 77, "complic": 1, "compon": [71, 72, 73, 76, 78, 83], "compromis": 72, "comput": [0, 1, 2, 3, 4, 5, 6, 10, 11, 13, 32, 33, 43, 44, 47, 50, 51, 58, 59, 65, 69, 70, 71, 72, 73, 74, 75, 76, 77, 81, 83, 84, 85, 86], "computation": [1, 73], "computationalpsychiatri": 69, "concaten": 83, "concentr": 11, "concept": [71, 78, 84], "concern": 71, "concis": 84, "cond": 80, "condit": 85, "confid": 73, "confidence_level": 73, "connect": [1, 6, 16, 61, 71, 72, 77, 80, 84], "consequ": [71, 72], "consid": [65, 71, 72, 74, 76, 77, 80, 83, 84, 85], "consider": 1, "consist": [17, 62, 71, 72, 73, 75, 77, 79, 80, 83, 85], "constand": 80, "constant": [14, 71, 73, 80], "constitud": 71, "constitut": [80, 84], "constrained_layout": [71, 72, 73, 74, 76, 77, 78, 80, 81, 83, 85], "contain": [0, 1, 2, 3, 4, 16, 26, 30, 31, 43, 44, 54, 62, 69, 71, 72, 78, 81, 84], "context": [2, 4, 62, 74, 76, 77, 83, 84, 85], "contextu": 1, "contin": 3, "conting": [72, 75, 77, 83, 85], "contingencylist": 72, "continu": [1, 2, 3, 4, 5, 6, 16, 20, 28, 29, 33, 46, 58, 61, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 83, 84, 85], "continuous_input_upd": [35, 48], "continuous_node_prediction_error": [50, 51], "continuous_node_value_prediction_error": [49, 51], "continuous_node_volatility_prediction_error": [49, 50], "continuous_precis": 16, "contrari": 72, "control": [1, 71, 72, 78, 84, 85], "conveni": [71, 77], "converg": [74, 76, 77, 78, 79, 81, 83, 85], "convert": [28, 29, 58, 71, 73, 74, 75, 81, 83, 85], "copyright": 1, "core": [2, 17, 69, 72, 74, 76, 77, 78, 79, 81, 83, 85], "correct": [73, 86], "correctli": [27, 79], "correl": [0, 26, 79], "correspond": [16, 28, 29, 73, 74, 77, 78, 79, 80, 83, 84], "cost": 83, "costli": 73, "could": [32, 33, 34, 72, 75, 76, 77, 80, 83, 85], "count": [13, 73, 78], "counterpart": [72, 74], "coupl": [0, 1, 5, 6, 16, 23, 28, 35, 42, 43, 44, 48, 49, 60, 61, 65, 69, 70, 74, 82, 83, 85], "coupling_fn": [20, 24, 60, 72, 80], "coupling_strength": 60, "coupling_typ": 61, "cours": [70, 84], "cov": 73, "covari": 73, "cover": [71, 84, 85], "cpc": 70, "cpython": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "creat": [0, 2, 3, 4, 16, 28, 29, 53, 54, 69, 70, 73, 78, 79, 80, 81, 83, 84, 85], "create_belief_propagation_fn": 83, "creation": [72, 77, 84, 85], "creativ": 1, "crisi": 76, "critic": [1, 72, 77], "cross": [4, 78, 85, 86], "crucial": 78, "csv": 84, "cumsum": [71, 80, 84], "currenc": 76, "current": [0, 1, 41, 60, 69, 71, 72, 73, 77, 84, 86], "current_belief": 85, "curv": 28, "custom": [16, 70, 74, 75, 78, 83, 84, 85], "custom_op": [75, 83], "customdist": [78, 85], "customis": 70, "customop": [75, 83], "d": [1, 11, 69, 73, 86], "dai": 84, "dark": 84, "dash": 71, "data": [0, 1, 2, 3, 4, 5, 6, 28, 29, 32, 33, 34, 62, 68, 69, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86], "data2": 73, "databas": 84, "datafram": 68, "dataset": [77, 81, 84, 85], "daugaard": [1, 69], "daunizeau": [1, 69, 86], "de": 86, "deadlock": 85, "deal": [1, 83], "debug": 84, "dec": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "decid": [71, 76, 77, 85], "decis": [1, 6, 30, 31, 69, 74, 75, 78, 79, 85], "declar": [72, 78, 80], "decreas": 83, "dedic": 76, "deeper": 69, "def": [72, 73, 75, 77, 78, 80, 83, 85], "default": [2, 3, 4, 5, 6, 16, 25, 28, 29, 32, 33, 62, 64, 65, 69, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 83, 85], "default_paramet": 25, "defin": [12, 16, 17, 28, 69, 71, 72, 74, 75, 76, 77, 78, 80, 84, 85], "definit": [65, 77], "degre": [73, 74, 76, 80], "delet": 67, "deliv": 84, "delta": [40, 73, 80], "delta_j": [50, 51], "demonstr": [1, 69, 73, 74, 77, 79, 81, 82], "denmark": 80, "denot": 71, "densiti": [0, 2, 11, 12, 13, 74, 76, 78, 82, 84], "depend": [5, 41, 71, 73, 74, 76, 77, 78, 80, 84], "depict": [29, 71, 85], "deriv": [1, 71, 73, 80], "describ": [0, 69, 70, 71, 72, 73, 74, 77, 84], "descript": [1, 71, 84], "design": [69, 70, 72, 75, 77, 78, 83, 84, 85], "despin": [71, 72, 73, 75, 78, 79, 80, 82, 83, 84, 85], "detail": [71, 79, 83, 84], "detect": 81, "determin": 1, "determinist": [1, 78, 85], "dev0": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "develop": [69, 72, 85], "deviat": [28, 29, 52, 55, 56, 73, 78, 81], "df": [73, 74, 76], "diagnos": 85, "diagnost": [74, 76, 77, 78, 79, 81, 83, 85], "dict": [16, 18, 19, 20, 21, 22, 24, 25, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 57, 58, 59, 60, 61, 62, 63, 67], "dictionari": [16, 62, 69, 72, 74, 76, 84], "dictonari": 25, "did": [76, 78], "differ": [1, 2, 3, 4, 5, 16, 36, 37, 46, 60, 71, 72, 73, 74, 76, 77, 78, 80, 83, 84], "differenti": [40, 69, 73, 74, 76, 80], "difficult": [1, 73, 84], "diffus": [69, 72], "dimens": [3, 5, 6, 71, 72, 73, 78], "dimension": [73, 83], "dir": 11, "direct": [71, 72], "directli": [35, 72, 74, 76, 77, 78, 80, 83], "dirichlet": [11, 21, 35, 73, 75], "dirichlet_nod": 45, "disambigu": 72, "disappear": 80, "discrep": [74, 76], "discret": [1, 75, 85], "discuss": [1, 71, 83, 85], "displai": [73, 78, 80, 85], "dissoci": [0, 72], "dist": 79, "dist_mean": 82, "dist_std": 82, "distanc": 73, "distant": 73, "distinguish": [78, 84], "distribut": [7, 8, 9, 10, 11, 13, 14, 35, 56, 58, 59, 69, 70, 71, 72, 74, 75, 76, 77, 79, 81, 84, 85], "dive": [71, 72], "diverg": [0, 11, 75, 79, 85], "dk": 80, "do": [69, 72, 73, 74, 75, 76, 77, 78, 80, 84, 85], "documatt": 72, "document": [69, 75, 84, 85], "doe": [73, 75, 77, 84, 85], "doesn": 80, "doi": [1, 13, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 69, 86], "dollar": 76, "domain": [76, 85], "don": [71, 84], "done": [72, 73], "dopamin": 1, "dopaminerg": [69, 86], "dot": 76, "down": [0, 69, 71, 73, 84], "download": [69, 81, 84], "drag": 76, "drai": 74, "draw": [1, 28, 29, 74, 76, 77, 78, 79, 81, 83, 85], "drift": [5, 6, 16, 43, 72, 80, 84], "dse": 85, "dtype": [9, 14, 56, 73, 74, 75, 76, 77, 83, 84, 85], "due": 72, "duplic": [78, 79], "dure": [0, 17, 44, 56, 69, 72, 76, 78, 79, 80, 86], "dx": 86, "dynam": [17, 69, 70, 77, 80, 81, 84, 85], "e": [1, 2, 5, 6, 16, 28, 31, 36, 37, 41, 42, 43, 44, 46, 49, 50, 51, 60, 62, 66, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 81, 83, 84, 85, 86], "e49547": 86, "each": [2, 3, 4, 17, 28, 29, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 52, 53, 54, 56, 57, 58, 59, 62, 64, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85], "eas": 69, "easili": [72, 75, 77, 84, 85], "ecg": 81, "ecg_peak": 81, "ecosystem": 69, "edg": [17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 83], "edgecolor": [72, 73, 77, 79, 83, 85], "editor": 86, "ef": [40, 73], "effect": [44, 69, 76, 79, 86], "effective_precis": 44, "effici": [1, 69, 71], "ehgf": [37, 65], "eigenvalu": 73, "eigenvector": 73, "eigh": 73, "either": [54, 61, 72, 77, 78, 80, 84], "ekaterina": [1, 86], "elaps": [71, 83], "electrocardiographi": 81, "electron": 1, "element": 80, "elicit": [14, 73], "elif": 86, "ellicit": 9, "ellips": 73, "elpd": 78, "elpd_diff": 85, "elpd_loo": [78, 85], "els": [73, 79, 83], "elsevi": 69, "emb": [74, 76], "embed": [0, 70, 74, 76, 78], "empir": 1, "empti": 17, "en": [7, 8], "enabl": 1, "encapsul": [73, 75], "encod": [1, 69, 71, 75, 77, 79, 84, 85], "end": [9, 13, 40, 58, 71, 73, 77, 80], "endogen": 44, "energi": [1, 86], "enhanc": 69, "enno": [1, 86], "ensur": [65, 73, 74, 76, 78, 79, 83, 84], "enter": 71, "entir": 72, "entri": 16, "enumer": [71, 73, 85], "environ": [1, 71, 72, 77, 78, 84, 85], "environment": [1, 72, 79], "eq": 11, "equal": [1, 3, 37, 62, 73, 80], "equat": [1, 11, 71, 74, 75, 76, 77, 80, 83, 84], "equival": [73, 77], "erdem": 86, "eric": 86, "error": [1, 40, 47, 48, 49, 50, 51, 54, 62, 65, 69, 72, 73, 76, 80, 81, 84, 85, 86], "especi": [71, 73, 78, 83, 85], "ess": 79, "ess_bulk": [2, 77, 85], "ess_tail": [2, 77, 85], "estim": [0, 1, 2, 28, 29, 70, 71, 73, 77, 78, 79, 83, 84, 85], "et": [0, 69, 71, 72, 74, 77, 78, 84, 85], "eta": 73, "eta0": [10, 16, 29, 74], "eta1": [10, 16, 29, 74], "etc": 72, "euro": 76, "european": 86, "eval": 78, "evalu": [13, 71, 75, 77, 83, 86], "even": [1, 71, 80], "event": [1, 76, 82], "everi": [70, 71, 72, 75, 78, 83, 84, 85], "everyth": 77, "evid": [6, 73, 85], "evidenc": 73, "evolut": [71, 74, 76, 77, 84, 85], "evolutionari": 1, "evolv": [70, 71, 83], "exact": [71, 77, 84], "exactli": [71, 75, 77, 78], "exampl": [1, 2, 9, 14, 28, 29, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 84, 85], "excel": 77, "except": [74, 76, 77, 85], "exchang": 76, "exclud": [66, 83], "exclus": 66, "execut": [0, 72], "exert": [71, 72], "exhibit": [74, 76], "exist": [52, 54, 55, 56, 57, 61, 72], "exogen": 44, "exot": 75, "exp": [44, 71, 73, 78, 83, 84], "expect": [0, 5, 6, 9, 10, 14, 16, 28, 29, 31, 35, 37, 40, 41, 42, 43, 44, 55, 58, 71, 72, 73, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85], "expected_mean": [9, 10, 14, 43, 52, 55, 56, 71, 72, 77, 78, 79, 82, 83, 85], "expected_precis": [10, 14, 44, 72, 82], "expected_sigma": [52, 55, 56], "experi": [77, 85], "experiment": [1, 70, 77, 78, 79, 83, 85], "explain": [78, 84, 85], "explan": 85, "explicit": 77, "explicitli": [1, 72, 73, 78, 81], "explor": 85, "exponenti": [7, 8, 13, 22, 70, 71, 84], "exponential_famili": [7, 8], "export": [68, 77], "express": [1, 72, 73, 75, 76, 80, 83, 84], "extend": [72, 73, 74, 76, 78], "extens": [1, 70, 85], "extract": [74, 76, 81, 82, 85], "extrem": [1, 73, 76, 83], "f": [43, 69, 71, 72, 73, 80, 84], "f_1": 72, "f_i": 72, "f_n": 72, "f_x": 73, "facilit": 72, "fact": [80, 83], "fail": 37, "fairli": 79, "fall": 76, "fals": [28, 29, 73, 80, 85], "famili": [7, 8, 13, 22, 58, 59, 70, 71, 84], "familiar": 77, "far": [72, 76, 77, 84, 85], "fashion": 1, "fast": [80, 83, 85], "featur": [6, 72, 78, 81, 84], "februari": 86, "fed": 78, "feed": [28, 29, 83], "fewer": 82, "field": [1, 72, 77, 85], "fig": [73, 75, 79, 80, 82], "figsiz": [28, 29, 71, 72, 73, 75, 77, 79, 80, 82, 83, 84, 85], "figur": [28, 29, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 83, 84, 85], "fil": 11, "file": 1, "filer": 1, "fill": 79, "fill_between": [75, 82, 83], "filter": [0, 1, 5, 6, 13, 16, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 72, 77, 78, 79, 82, 83, 85, 86], "final": [1, 84, 85], "find": [55, 69, 70, 72, 76, 77, 84], "finit": [10, 46], "fir": 81, "firebrick": 83, "first": [0, 1, 3, 5, 6, 10, 16, 33, 36, 37, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 83, 84, 85], "first_level_binary_surpris": [74, 85], "first_level_gaussian_surpris": [76, 81, 84], "firt": 31, "fit": [2, 3, 4, 5, 6, 32, 33, 34, 73, 77, 78, 79, 80, 83, 84], "fix": [2, 58, 59, 71, 77, 78, 80, 84, 85], "flatten": 78, "flexibl": [1, 69, 73, 75, 84, 85], "flight": 76, "float": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 32, 33, 34, 52, 55, 56, 60, 61, 62, 75, 78], "float32": [9, 14, 73, 74, 76, 77, 84, 85], "float64": [75, 83], "floor": 76, "fluctuat": 71, "flux": 84, "fn": 85, "fnhum": [1, 69, 86], "fo": 1, "focus": [72, 83], "folder": 69, "follow": [1, 11, 65, 69, 71, 72, 73, 74, 75, 76, 80, 83, 84, 85], "forc": 83, "fork": [74, 85], "form": [1, 71, 72, 73, 78, 80, 84], "formal": 71, "formul": 1, "forward": [69, 71, 74, 76, 78, 79, 83, 84, 85], "found": [1, 71, 72, 74, 76, 84], "foundat": [1, 69, 84, 86], "four": [1, 72, 83, 85], "fpsyt": 69, "frac": [11, 13, 14, 28, 31, 40, 41, 43, 44, 51, 59, 71, 73, 75, 78, 83], "fraction": 84, "frame": [68, 71, 73, 81, 84], "framework": [1, 69, 70, 71, 72, 73], "franc": 76, "free": [1, 69, 74, 77, 79], "freedom": 73, "friston": [1, 69, 86], "from": [0, 1, 2, 5, 6, 9, 11, 13, 14, 28, 29, 30, 31, 40, 48, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 80, 81, 82, 84, 85], "frontier": [1, 69, 86], "frontiersin": [1, 86], "fry": 56, "fr\u00e4ssle": 69, "full": [1, 6], "fulli": [71, 84], "func": 73, "funcanim": 73, "function": [1, 2, 3, 4, 5, 6, 15, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39, 60, 62, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 83, 84, 85], "fundament": 71, "fundat": 1, "further": [69, 71, 72, 73, 78, 82, 83], "fusion": 77, "futur": [0, 71, 86], "g": [1, 5, 6, 69, 71, 73, 77, 79, 80, 85], "g_": [73, 80], "gabri": 86, "gamma": [11, 13, 73, 75], "gamma_a": 44, "gaussian": [0, 1, 2, 5, 6, 12, 13, 14, 16, 28, 33, 34, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 72, 77, 78, 79, 80, 81, 83, 85, 86], "gaussian_predictive_distribut": 73, "gcc": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "ge": 86, "gelman": 86, "gener": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 63, 65, 70, 72, 73, 74, 75, 77, 78, 79, 80, 83, 85, 86], "generalis": [1, 70, 75, 77], "generalised_filt": 73, "get": [41, 72, 73, 76, 77, 78, 79, 82, 83, 84, 85], "get_legend_handles_label": [71, 85], "get_network": 83, "get_update_sequ": 72, "ghgf": [69, 84, 85], "gif": 73, "git": 69, "github": [11, 69], "githubusercont": 84, "give": [74, 76, 77, 80, 83, 85], "given": [0, 6, 9, 11, 14, 28, 31, 32, 33, 34, 35, 40, 43, 44, 46, 50, 51, 55, 56, 59, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 83, 84, 85], "global": [1, 76], "go": [71, 74, 76, 77, 78, 83, 84], "goe": 75, "good": [73, 77, 78, 79, 83], "googl": [70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "grad": [75, 83], "grad_custom_op": 83, "grad_logp_fn": 83, "grad_volatil": 83, "gradcustomop": 83, "gradient": [3, 75, 83], "grai": 83, "grandpar": 72, "graph": [62, 70, 72, 75, 83], "graphviz": [27, 74, 76], "greater": [72, 73], "greec": 76, "green": [79, 80], "grei": [28, 71, 73, 76, 79, 82], "grid": [71, 73, 79, 80, 82, 84, 85], "ground": 84, "group": [70, 71, 79, 85], "grow": 75, "grw": [71, 84], "grw_1": 84, "grw_2": 84, "guess": 73, "guid": 71, "gz": 75, "h": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 71, 73, 85, 86], "ha": [1, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 60, 64, 71, 72, 73, 74, 75, 76, 77, 78, 83, 84, 85], "had": [77, 78, 85], "halfnorm": 78, "hamiltonian": [74, 76, 85], "hand": [70, 77], "handi": 80, "handl": [70, 71, 73, 75, 77, 78, 85], "happen": [71, 77, 80, 84], "harrison": [69, 86], "hat": [9, 14, 28, 31, 41, 43, 44, 50, 51, 71, 77, 78, 80], "have": [1, 35, 40, 48, 65, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 84, 85], "hdi_3": [2, 77, 85], "hdi_97": [2, 77, 85], "he": 77, "head": [77, 84], "heart": [0, 71, 72], "heartbeat": 81, "heatmap": 26, "heavi": 72, "hedvig": [1, 86], "height": [28, 29, 73, 84], "heinzl": 69, "help": [73, 76, 78, 84], "her": 77, "here": [1, 2, 30, 31, 32, 33, 34, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 83, 84, 85], "hgf": [0, 1, 2, 3, 4, 5, 6, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 40, 63, 69, 70, 71, 72, 73, 75, 78, 79, 80, 81, 82, 83, 84], "hgf_loglik": [74, 76, 77, 79, 81, 85], "hgf_logp_op": [2, 74, 76, 77, 78, 79, 81, 85], "hgf_logp_op_pointwis": [78, 85], "hgf_mcmc": [74, 76], "hgfdistribut": [74, 75, 76, 77, 78, 79, 81, 85], "hgfpointwis": [78, 85], "hhgf_loglik": 2, "hidden": [1, 71, 83, 84, 85], "hide": 83, "hierarch": [0, 1, 5, 6, 13, 16, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 72, 77, 79, 81, 82, 83, 85, 86], "hierarchi": [0, 1, 2, 3, 4, 16, 69, 71, 72, 74, 76, 84], "hierarchicalgaussianfilt": 77, "high": [73, 82, 83], "high_nois": 80, "high_prob": 83, "higher": [71, 74, 76, 78, 79, 80, 84, 85], "highest": 1, "highli": [1, 76, 85], "hist": 83, "hold": [71, 73, 77], "home": 1, "hostedtoolcach": 85, "hour": [70, 84], "hourli": [84, 86], "how": [40, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "howev": [1, 71, 72, 73, 75, 76, 77, 78, 80, 81, 85], "html": 11, "http": [1, 7, 8, 11, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 69, 79, 84, 86], "human": [1, 69, 86], "hyper": 78, "hyperparamet": [13, 40, 59, 73], "hyperprior": [78, 79], "i": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 16, 17, 28, 29, 31, 32, 33, 35, 36, 37, 40, 42, 43, 44, 48, 49, 50, 51, 54, 58, 59, 60, 62, 64, 65, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86], "iain": 86, "idata": [2, 81, 83, 85], "idata_kwarg": 85, "idea": [71, 72, 76, 77, 79], "ident": 80, "identifi": 79, "idx": [75, 79], "iglesia": [1, 69, 74, 77, 85, 86], "ignor": [5, 6], "ii": [1, 70], "iii": 1, "ilabcod": 84, "illustr": [1, 71, 72, 73, 75, 76, 77, 80, 81, 83, 84, 85], "imagin": 80, "impact": 83, "impl": 40, "implement": [0, 16, 43, 58, 59, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "impli": [35, 40, 58, 63, 71, 73, 75, 76, 83, 84], "implicitli": 77, "import": [1, 2, 9, 14, 28, 29, 69, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "import_dataset1": 81, "importantli": [71, 72], "imposs": 65, "improv": [65, 73, 85], "imshow": 75, "includ": [5, 6, 16, 71, 72, 73, 74, 76, 77, 78, 80, 81, 85], "incom": [71, 84], "incompat": 85, "incorpor": [16, 42, 49, 77, 78], "incorrect": 80, "increas": [73, 74, 76, 79, 80, 83, 84, 85], "increment": [62, 71], "inde": 78, "independ": [70, 73, 79], "index": [17, 23, 28, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 69, 72], "indic": [60, 67, 71, 76, 77, 78, 79, 80, 81, 83, 85], "individu": [1, 69, 79, 86], "inf": [5, 16, 29, 32, 33, 34, 74, 75, 78, 83], "infer": [0, 1, 5, 6, 13, 40, 58, 59, 62, 69, 70, 71, 72, 73, 76, 77, 82, 85, 86], "inferred_paramet": 79, "infin": 84, "infinit": [75, 83], "influenc": [0, 1, 43, 71, 72, 73, 74, 76, 78, 80, 83, 84, 85], "inform": [1, 13, 17, 62, 72, 73, 74, 75, 76, 78, 80, 83, 84, 85], "infti": 76, "ingredi": 77, "inherit": [5, 6, 69, 71, 84], "initi": [2, 3, 4, 16, 17, 72, 73, 74, 76, 77, 78, 79, 81, 83, 84, 85], "initial_belief": 85, "initial_mean": [16, 28, 29, 74, 76, 77, 78, 79, 81, 85], "initial_precis": [16, 28, 29, 74, 76, 77, 81, 85], "initv": 79, "inp": 83, "inplac": 75, "input": [0, 1, 2, 3, 4, 5, 6, 16, 17, 28, 29, 30, 31, 32, 33, 34, 35, 45, 46, 48, 49, 53, 54, 55, 57, 62, 64, 66, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "input_convers": 81, "input_data": [2, 3, 4, 5, 6, 28, 29, 69, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "input_idx": [62, 80, 83], "input_nodes_idx": 45, "input_precis": [5, 6], "input_typ": 81, "insert": [24, 71], "insid": [77, 80, 83, 85], "inspir": [69, 71, 72], "instal": [27, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "instanc": [0, 6, 26, 27, 28, 29, 30, 31, 32, 33, 34, 63, 65, 69, 72, 74, 76, 77, 78, 84], "instanti": [75, 83], "instead": [2, 3, 4, 76, 83, 84, 85], "instruct": 72, "instrument": 80, "int": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 73, 80], "int32": 85, "integ": [2, 3, 4, 72], "integr": [1, 69, 73, 85], "intellig": 1, "inter": 1, "interact": [70, 71, 85], "intercept": 71, "interest": [71, 73, 78, 79, 83, 84], "interestingli": 73, "interfac": 77, "interleav": 0, "intern": [1, 40, 58, 59, 70, 75, 77, 78, 80, 84, 86], "interocept": 70, "interpol": 75, "interpret": 1, "intersect": 70, "interv": [41, 73, 80, 81], "interven": 76, "intervent": 76, "intract": 73, "introduc": [1, 70, 71, 75, 84, 85], "introduct": [69, 70], "introductori": 84, "intuit": [1, 70, 77], "invalid": 73, "invers": [1, 5, 6, 31, 69, 70, 71, 73, 77, 78, 79, 83], "inverse_temperatur": [78, 79], "invert": [1, 84, 85], "involv": 1, "io": [11, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "ion": 11, "ipykernel_3845": 76, "ipython": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "irrespect": 56, "isbn": 1, "isclos": [74, 76], "isnan": [75, 83], "issn": 1, "item": [2, 3, 4, 83], "iter": [71, 74, 76, 77, 78, 79, 81, 82, 83, 85], "its": [1, 41, 43, 54, 60, 67, 69, 70, 71, 72, 74, 76, 77, 78, 80, 81, 84, 85], "itself": [71, 72, 73, 74, 80, 84], "iv": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "j": [1, 44, 51, 69, 86], "jacobian": [75, 83], "jan": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86], "jax": [0, 5, 17, 29, 30, 31, 56, 62, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "jaxlib": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "jean": [1, 86], "jit": [69, 75, 83], "jitted_custom_op_jax": [75, 83], "jitted_vjp_custom_op_jax": 75, "jitter": [74, 76, 77, 78, 79, 81, 83, 85], "jl": 77, "jnp": [16, 29, 32, 33, 34, 73, 74, 75, 76, 77, 79, 80, 83], "job": [74, 76, 77, 78, 79, 81, 83, 85], "joint": [72, 73], "jonah": 86, "journal": [1, 86], "julia": [69, 72, 77], "jump": 71, "just": [77, 78, 79, 80, 84, 85], "k": [1, 11, 30, 31, 36, 37, 41, 42, 43, 44, 46, 49, 50, 51, 69, 71, 72, 73, 75, 77, 78, 79, 80, 83, 84, 85], "kai": [1, 86], "kalman": [71, 77], "kappa": 71, "kappa_1": 71, "kappa_j": 44, "karl": [1, 86], "kasper": [69, 86], "kdeplot": 79, "keep": [80, 84], "kei": [1, 56, 71, 72, 85], "keyword": [1, 25, 72, 77], "kg": 84, "khodadadi": [1, 69], "kind": [60, 69, 71, 72, 73, 75, 76, 78, 80, 83, 84, 85], "kl": [11, 75], "kl_diverg": 75, "klaa": [1, 86], "knew": [74, 76], "know": [71, 77, 80, 85], "knowledg": 84, "known": 80, "kora": 80, "kullback": [11, 75], "kwarg": [7, 8], "l": [1, 13, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 69, 71, 85, 86], "l_a": 83, "l_b": 83, "label": [71, 72, 73, 75, 77, 78, 82, 83, 84, 85], "laew": 1, "lambda": [71, 78, 80], "lambda_1": 71, "lambda_2": [71, 80], "lambda_2x_2": 80, "lambda_3": [71, 80], "lambda_a": [43, 71, 80], "land": 84, "lanillo": 86, "lar": 86, "larg": [72, 73, 84], "larger": [72, 73, 79, 84], "largest": 73, "last": [62, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "latent": 71, "later": [44, 69, 71, 78, 85], "latter": 83, "lax": [17, 62, 80, 83], "layer": [5, 71, 76, 84, 85], "layout": 76, "lead": [71, 76, 85], "learn": [1, 40, 58, 69, 71, 73, 75, 79, 80, 82, 84, 86], "learning_r": 85, "learnt": 80, "least": [0, 74, 76, 77, 78, 79, 81, 83, 85], "leav": [0, 62, 71, 78, 84, 85, 86], "lee": [78, 86], "left": [11, 13, 43, 44, 51, 71, 73, 75, 77, 84], "leftarrow": [40, 59, 73], "legend": [71, 72, 73, 77, 78, 80, 82, 83, 84, 85], "legrand": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 80, 86], "leibler": [11, 75], "len": [75, 77, 83, 85], "length": [2, 3, 4, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 62, 64, 77, 78], "leq": 80, "less": [16, 72, 77], "let": [71, 72, 73, 75, 77, 80, 84, 85], "level": [0, 1, 2, 5, 6, 16, 28, 29, 31, 33, 69, 70, 71, 72, 73, 77, 79, 80, 81, 82, 83, 84], "leverag": [73, 78], "lg": 1, "li": 71, "lib": 85, "librari": [0, 1, 72, 74, 76, 85], "like": [56, 74, 75, 76, 77, 78, 80, 84, 85], "likelihood": [52, 54, 76, 77, 78, 85], "lilian": [1, 86], "limit": [1, 37, 71, 73, 77, 80, 83, 85], "linalg": 73, "line": [71, 72, 76, 77, 80], "linear": [60, 70], "linear_hgf": 80, "linearli": 73, "linestyl": [71, 72, 73, 77, 79, 80, 82, 85], "linewidth": [71, 73, 75, 84, 85], "link": [1, 60, 69, 72, 78], "linspac": [78, 79, 82], "list": [2, 3, 4, 5, 17, 23, 28, 29, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 60, 62, 63, 64, 66, 69, 72, 75, 77, 78, 83, 84], "lit": 1, "ln": [11, 75], "load": [69, 84, 85], "load_data": [2, 28, 29, 69, 74, 76, 77, 78, 79, 84, 85], "load_ext": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "loc": [71, 73, 75, 82, 83, 84], "log": [2, 4, 5, 6, 9, 14, 28, 69, 74, 76, 77, 78, 83, 84, 85], "log_likelihoo": 85, "log_likelihood": [78, 85], "log_prob": 5, "logist": 15, "logit": [74, 85], "lognorm": 78, "logp": [5, 78, 85], "logp_fn": 83, "logp_pointwis": [78, 85], "lomakina": [1, 69, 86], "london": 11, "long": [80, 86], "longer": 73, "loo": 78, "loo_hgf": 78, "look": [73, 74, 75, 76, 80, 85], "loop": [71, 83, 84, 85], "loos": 83, "loss": 83, "loss_arm1": 83, "loss_arm2": 83, "lot": 74, "low": [82, 83], "low_nois": 80, "low_prob": 83, "lower": [71, 72, 73, 74, 75, 79], "lower_bound": 15, "lowest": 69, "luckili": 78, "m": [1, 69, 71, 72], "m2": 84, "m3": 84, "m_1": 71, "m_a": 43, "machin": 1, "made": [16, 72, 77, 78, 83, 84, 85], "magic": 84, "mai": [1, 75, 86], "main": [0, 27, 28, 29, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "major": [1, 73], "make": [1, 69, 71, 72, 74, 75, 77, 78, 82, 83, 84, 85], "make_nod": [75, 83], "manag": 80, "mani": [1, 2, 71, 72, 75, 77, 78], "manipul": [0, 17, 69, 70, 74, 77, 78, 83, 84], "manka": [69, 86], "manual": [72, 78, 80, 85], "many_binary_children_hgf": 72, "many_value_children_hgf": 72, "many_value_parents_hgf": 72, "many_volatility_children_hgf": 72, "many_volatility_parents_hgf": 72, "map": 78, "marker": 80, "market": 76, "markov": 1, "mask": [62, 83], "master": 69, "match": [5, 72, 80, 85], "math": [2, 43, 58, 59, 73, 79, 83], "mathcal": [2, 13, 71, 72, 73, 77, 78, 84], "mathemat": [1, 14, 71, 84], "mathi": [1, 13, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 69, 71, 72, 73, 84, 86], "matlab": [69, 71, 76], "matplotlib": [26, 28, 29, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "matrix": [73, 78, 83], "matter": [77, 85], "maxim": 76, "mayb": 78, "mcmc": [2, 70, 85], "mcse_mean": [2, 77, 85], "mcse_sd": [2, 77, 85], "mead": 1, "mean": [1, 2, 5, 6, 9, 12, 14, 16, 28, 29, 36, 37, 41, 42, 43, 52, 55, 56, 61, 65, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85], "mean_1": [2, 5, 6, 76], "mean_2": [5, 6], "mean_3": [5, 6], "mean_hgf": 82, "mean_mu_g0": 56, "mean_precision_hgf": 82, "measur": [75, 77, 79, 80, 81, 84], "mechan": 1, "media": 69, "member": 73, "mention": 71, "mere": 77, "messag": [69, 72], "meta": [72, 76], "meter": 84, "method": [1, 2, 3, 4, 7, 8, 16, 17, 32, 33, 58, 59, 69, 72, 73, 74, 76, 77, 78, 81, 84], "metric": 77, "michael": 86, "might": [2, 3, 4, 16, 77, 85], "miku\u0161": [1, 69], "min": 75, "mind": 85, "minim": [1, 72, 74, 76, 84, 85], "minimis": 81, "minor": 73, "misc": 1, "miss": [80, 83], "missing_inputs_data": 83, "mix": 84, "mm": 84, "modal": 81, "model": [1, 2, 3, 4, 5, 6, 26, 28, 29, 30, 31, 32, 33, 34, 37, 40, 63, 65, 70, 72, 73, 79, 80, 82, 83, 86], "model_to_graphviz": [74, 76, 78, 81, 85], "model_typ": [2, 3, 4, 16, 28, 29, 32, 72, 74, 76, 77, 78, 79, 81, 85], "modifi": 77, "modul": [0, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "modular": [69, 71, 72, 73, 85], "mojtaba": 1, "mon": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "mont": [1, 74, 76, 85], "montemagno": 80, "month": 84, "more": [70, 71, 72, 74, 75, 76, 77, 79, 80, 84, 85], "moreov": 78, "most": [16, 71, 72, 73, 74, 75, 76, 77, 83, 84], "mostli": 83, "move": [40, 71, 78, 85], "mu": [9, 14, 31, 41, 43, 50, 71, 73, 74, 76, 77, 78, 84], "mu_1": [71, 76, 80, 84], "mu_2": [71, 80], "mu_3": 80, "mu_a": [43, 44, 80], "mu_b": 80, "mu_i": 71, "mu_j": 50, "mu_temperatur": 78, "mu_volatil": 78, "much": [40, 72, 73, 76, 84, 85], "multi": [70, 78, 79], "multiarm": 70, "multilevel": [70, 78, 85], "multinomi": 75, "multipl": [1, 5, 28, 60, 72, 73, 75, 77, 78, 80, 81, 83], "multipleloc": 73, "multipli": 72, "multiprocess": 85, "multithread": 85, "multivari": 7, "multivariatenorm": 73, "must": [60, 80], "m\u00f8ller": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 86], "m\u00fcller": 69, "n": [1, 2, 4, 36, 37, 42, 43, 44, 46, 49, 50, 51, 62, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "n1662": 1, "n_": 44, "n_1": 72, "n_categori": 75, "n_j": 72, "n_level": [2, 3, 4, 5, 6, 16, 28, 29, 72, 74, 76, 77, 78, 79, 81, 85], "n_node": [18, 19, 20, 21, 22, 24, 72, 80, 83], "n_sampl": [55, 56], "nace": 1, "naiv": 73, "name": 71, "nan": [2, 3, 4, 5, 85], "nativ": [74, 76, 78, 80], "natur": [1, 71, 73], "nc": 1, "ncol": [71, 79], "ndarrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 52, 55, 56, 62], "ne": 1, "necessarili": 1, "need": [35, 36, 37, 46, 48, 72, 75, 77, 78, 79, 80, 83, 84, 85], "neg": [5, 6, 28, 37, 74, 76, 77, 80, 83, 84], "nelder": 1, "nest": [75, 77, 83, 84], "network": [0, 1, 5, 6, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 33, 34, 43, 44, 45, 53, 54, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 73, 74, 76, 77, 79, 80, 81, 82, 83, 84, 85], "neural": [0, 1, 17, 45, 53, 54, 57, 60, 65, 70, 71, 72, 80, 85], "neuroimag": [69, 86], "neuromodel": 69, "neuromodul": 1, "neuromodulatori": 1, "neuron": 1, "neurosci": [1, 69, 74, 76, 78, 86], "new": [0, 28, 29, 40, 41, 43, 44, 52, 53, 54, 55, 56, 58, 61, 62, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 83, 84, 85], "new_attribut": 72, "new_belief": 85, "new_input_precision_1": 72, "new_input_precision_2": 72, "new_mu": 56, "new_observ": 85, "new_sigma": 56, "newaxi": [2, 74, 76, 77, 78, 81, 85], "next": [1, 71, 74, 76, 77, 84], "nicola": [1, 80, 86], "nodal": 81, "nodalis": 84, "node": [2, 3, 4, 5, 6, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 32, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78, 81, 82, 83, 85], "node_idx": [28, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 57, 58, 59, 63, 66, 72, 73, 75, 83], "node_paramet": [18, 19, 20, 21, 22, 24, 25, 72], "node_trajectori": [17, 73, 75, 77, 78, 79, 82, 83, 85], "node_typ": [24, 72], "nois": [1, 72, 80], "noisi": [72, 73, 80], "noisier": [73, 80, 85], "non": [53, 57, 70], "non_sequ": 85, "none": [2, 3, 4, 6, 16, 17, 20, 22, 23, 24, 28, 29, 32, 33, 34, 35, 60, 71, 72, 74, 75, 77, 78, 80], "nonlinear_hgf": 80, "noon": 84, "norm": [73, 82], "normal": [1, 2, 7, 10, 11, 58, 59, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "note": [16, 27, 35, 42, 48, 49, 60, 71, 74, 76, 77, 78, 80, 83, 84, 85], "notebook": [70, 71, 72, 74, 76, 77, 78, 80, 82, 83, 85], "notic": 80, "notion": [71, 72], "nov": 86, "novel": 1, "novemb": 86, "now": [71, 72, 74, 76, 77, 78, 80, 83, 84, 85], "np": [2, 5, 13, 71, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85], "nrow": [71, 73, 75, 83], "nu": [13, 40, 58, 59], "num": 79, "num_sampl": 85, "number": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 28, 29, 30, 31, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 62, 64, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 85], "numer": [1, 75, 83], "numpi": [2, 4, 5, 29, 30, 31, 56, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "nut": [74, 76, 77, 78, 79, 81, 83, 85], "nutshel": 77, "o": [69, 84, 85], "o_": 77, "ob": 83, "object": [79, 85], "observ": [0, 9, 10, 13, 14, 28, 35, 40, 48, 52, 54, 55, 56, 58, 62, 69, 70, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 84, 85], "obtain": 77, "occur": [37, 75, 78], "octob": 86, "offer": [1, 71], "offici": [69, 75], "often": [37, 71, 72, 77, 78, 79], "omega": [74, 75, 76, 78, 81, 83, 84], "omega_": [74, 76, 78], "omega_1": [71, 76, 84], "omega_2": [2, 71, 74, 75, 76, 77, 81, 85], "omega_3": [74, 76], "omega_a": 44, "onc": [71, 72, 85], "one": [1, 2, 3, 4, 28, 43, 58, 59, 71, 72, 73, 77, 78, 83, 84, 85, 86], "ones": [79, 80, 83], "onli": [0, 6, 16, 29, 32, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84], "onlin": [1, 73], "oop": 84, "op": [3, 75, 83], "open": [69, 81], "oper": [69, 73, 75, 77, 84], "operand": [53, 57], "opt": 85, "optim": [1, 65, 69, 71, 72, 74, 76, 83], "optimis": [74, 76, 77], "option": [31, 43, 76, 77], "orang": 76, "order": [60, 69, 71, 72, 73, 74, 76, 77, 80, 85], "org": [1, 7, 8, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 69, 79, 86], "organ": 0, "origin": [65, 69, 80], "orphan": 71, "oscil": 80, "oscillatori": 80, "other": [1, 66, 69, 71, 72, 73, 74, 76, 77, 80, 83, 84, 85], "otherwis": 83, "our": [1, 71, 73, 74, 76, 77, 78, 80, 81, 83, 85], "ourselv": [74, 76], "out": [71, 78, 85, 86], "outcom": [9, 14, 69, 70, 72, 74, 77, 78, 83, 85], "outcome_1": 85, "outcome_2": 85, "output": [75, 77, 83, 86], "output_gradi": [75, 83], "output_typ": 81, "outputs_info": 85, "outsid": 80, "over": [2, 5, 6, 13, 69, 70, 71, 72, 73, 74, 76, 77, 78, 80, 81, 83, 84, 85], "overal": [1, 76, 77], "overcom": 80, "overfit": [76, 83], "overlai": 56, "overtim": 82, "overview": 71, "own": [43, 71, 84], "p": [1, 11, 31, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "p1": 75, "p2": 75, "p3": 75, "p_a": [43, 80, 83], "p_loo": [78, 85], "pablo": 86, "packag": [1, 69, 72, 77], "page": 1, "pair": 71, "pan": 81, "panda": [68, 77, 81, 84], "panel": [29, 72, 76, 77], "paper": [1, 69, 71], "parallel": [3, 5, 6, 73, 78], "paramet": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 16, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 78, 80, 81, 84], "parameter": [16, 71], "parameter_structur": 62, "parameters_from_sufficient_statist": 73, "parametr": [11, 13, 17, 31, 52, 54, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 85], "parametris": [24, 83, 84, 85], "paraticip": [30, 31], "parent": [0, 5, 6, 16, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 53, 54, 57, 58, 59, 60, 61, 64, 65, 66, 69, 71, 72, 73, 74, 76, 80, 81, 82, 83, 84], "parent_idx": 60, "pareto": 78, "part": [5, 6, 16, 69, 71, 72, 75, 76, 77, 78, 80, 84, 85], "partial": [75, 79, 83], "particip": [77, 78, 79, 81, 85], "particular": [71, 84], "pass": [2, 3, 4, 5, 6, 17, 35, 48, 58, 69, 71, 72, 73, 74, 76, 77, 80, 83, 84], "past": [73, 77], "patch": 73, "patholog": 1, "pattern": 86, "pct": 78, "pd": 84, "pdf": [1, 73, 82], "peak": 81, "penni": 11, "per": [78, 79], "percept": [1, 69, 86], "perceptu": [1, 2, 3, 4, 16, 77, 78, 79], "pereira": 69, "perform": [1, 5, 6, 37, 43, 62, 65, 70, 71, 72, 74, 75, 76, 77, 80, 81, 83, 84, 85], "perspect": [74, 76], "peter": [1, 86], "petzschner": 69, "pfenning": [84, 86], "phasic": [5, 6, 16, 43, 44, 71, 84], "phenomena": 72, "phenomenon": 80, "phi": 71, "physio_df": 81, "physiolog": [70, 76], "pi": [13, 14, 28, 41, 44, 51, 71, 73, 74, 76, 80], "pi_1": 71, "pi_a": 44, "pi_i": 71, "pi_j": 51, "pid": 85, "piec": 85, "pip": [69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "pjitfunct": 5, "place": [71, 72, 78, 83], "plai": [1, 76], "plausibl": 69, "pleas": [1, 78], "plot": [71, 72, 73, 75, 77, 79, 80, 82, 83, 84, 85], "plot_compar": 85, "plot_confidence_interv": 73, "plot_correl": 76, "plot_network": [72, 73, 74, 75, 76, 80, 82, 83, 84, 85], "plot_nod": [72, 75, 80, 83], "plot_posterior": [78, 83], "plot_raw": 81, "plot_trac": [74, 75, 76, 77, 81, 85], "plot_trajectori": [69, 72, 74, 76, 80, 81, 84, 85], "plt": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "pm": [2, 74, 75, 76, 77, 78, 79, 81, 83, 85], "pmid": 1, "point": [13, 32, 33, 34, 41, 62, 71, 72, 73, 74, 75, 76, 77, 78, 83, 84], "pointer": [35, 36, 37, 40, 41, 42, 45, 46, 47, 48, 49, 50, 51, 53, 54, 57, 58, 59], "pointwis": [4, 78, 85], "pointwise_loglikelihood": [78, 85], "pool": 79, "poor": 84, "popen_fork": 85, "popul": 78, "popular": [73, 85], "posit": [72, 77, 78, 84], "possess": 80, "possibl": [10, 43, 64, 70, 72, 75, 77, 78, 80, 81, 84, 85], "post": 75, "post1": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "posterior": [1, 2, 28, 29, 46, 58, 62, 65, 69, 70, 71, 73, 84], "posterior_update_mean_continuous_nod": [36, 37], "posterior_update_precision_continuous_nod": [36, 37], "posteriori": 78, "potenti": [2, 74, 75, 76, 77, 79, 81, 83, 85], "power": [85, 86], "pp": [13, 40, 58, 59], "ppf": 73, "ppg": 81, "pr": [74, 77], "practic": [70, 72, 77, 86], "pre": [16, 17, 52, 54, 56, 74, 75, 76, 85], "precipit": 84, "precis": [1, 5, 6, 10, 12, 14, 16, 28, 29, 36, 37, 41, 42, 44, 46, 47, 55, 65, 69, 70, 71, 72, 73, 74, 75, 76, 80, 83, 84], "precision_1": [2, 5, 6], "precision_2": [2, 5, 6], "precision_3": [5, 6], "precsnoland": 84, "prectotland": 84, "predict": [1, 13, 14, 17, 40, 47, 48, 49, 50, 51, 54, 62, 65, 70, 72, 73, 76, 77, 78, 81, 83, 84, 86], "prediction_sequ": 65, "presenc": 79, "present": [69, 70, 71, 72, 74, 76, 77, 78, 83, 84], "press": 86, "previou": [0, 1, 41, 54, 55, 71, 72, 74, 75, 76, 77, 78, 80, 84, 85], "previous": [71, 77, 84], "principl": [1, 65, 71, 72, 77, 84, 85], "print": [2, 69], "prior": [2, 70, 72, 73, 74, 76, 77, 78, 81, 84, 85], "probabilist": [0, 1, 2, 17, 28, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 57, 58, 59, 64, 69, 70, 71, 76, 77, 81, 83, 85], "probabl": [0, 1, 2, 4, 5, 6, 9, 10, 13, 28, 31, 35, 52, 58, 59, 70, 71, 73, 74, 76, 77, 78, 79, 83, 84, 85], "problem": [70, 79], "procedur": [72, 78, 85], "proceed": 78, "process": [1, 21, 36, 37, 43, 45, 53, 54, 57, 70, 72, 73, 80, 83, 84, 85], "produc": [78, 83, 85], "product": [75, 83], "programmat": 77, "progress": [72, 75, 80], "propag": [0, 17, 62, 72, 77, 84, 85], "propens": [71, 78], "properti": [1, 72, 73], "proport": 73, "propos": 65, "provid": [1, 2, 3, 4, 5, 16, 28, 31, 60, 71, 72, 74, 75, 76, 77, 78, 80, 83, 84, 85], "proxim": 72, "pseudo": [13, 73, 78], "psi": [11, 35, 48, 75], "psychiatri": [69, 70, 77, 78, 84], "psycholog": 77, "pt": [75, 78, 83, 85], "public": [1, 11, 75], "publish": [1, 40, 58, 59, 86], "pulcu": [83, 86], "punish": [70, 86], "purpos": [71, 77, 82], "put": 76, "pv": 86, "pval": 75, "py": [76, 85], "pyhgf": [1, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "pymc": [0, 2, 5, 6, 74, 75, 76, 77, 78, 79, 81, 83, 85], "pyplot": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "pytensor": [74, 75, 76, 77, 78, 79, 81, 83, 85], "python": [69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "python3": 85, "pytre": 72, "pytress": 72, "q": [1, 11, 75], "qualiti": 78, "quantifi": 40, "quantiti": [78, 82, 83, 84, 85], "question": 73, "quickli": [76, 85], "quit": 76, "r": [69, 71, 73, 80, 81, 83], "r_a": 73, "r_hat": [2, 77, 85], "rain": 84, "raman": 69, "rand": 73, "randn": 73, "random": [1, 5, 6, 16, 43, 56, 72, 73, 75, 77, 78, 79, 80, 82, 83], "randomli": [71, 79, 85], "rang": [71, 72, 73, 75, 77, 78, 79, 82, 83, 84], "rank": 85, "rapidli": 73, "rate": [40, 43, 58, 69, 71, 73, 74, 76, 77, 82, 83, 84, 85], "rather": 85, "ratio": [40, 73], "ration": 86, "raw": 84, "rcparam": [71, 72, 73, 74, 76, 77, 78, 80, 81, 83, 85], "reach": 72, "react": 76, "read": [28, 29, 84, 85], "read_csv": 84, "reader": 71, "readi": [83, 85], "real": [1, 72, 73, 74, 76, 77, 80, 81, 84, 85], "reanalysi": 86, "reason": [72, 74, 76, 77, 78], "recap": 85, "receiv": [0, 35, 43, 54, 62, 69, 71, 72, 75, 77, 78, 80, 83, 85], "recent": 1, "recommend": [74, 76, 77, 78, 79, 81, 83, 85], "reconstruct": 85, "record": [70, 83, 84], "recov": [0, 58, 70, 83], "recoveri": [70, 77, 85], "recurs": [66, 69], "red": 79, "reduc": 65, "ref": 79, "ref_val": 78, "refer": [1, 7, 8, 11, 13, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 71, 72, 75, 77, 78, 79, 84], "reflect": [72, 84], "regist": [72, 80, 85], "regular": [37, 71, 74, 85], "reinforc": [1, 70, 71, 73, 74, 75], "relat": [1, 77, 81], "relationship": 60, "relax": 82, "releas": 69, "relev": [16, 74, 76, 80], "reli": [71, 73, 78], "reliabl": 79, "remain": [67, 69, 73, 83], "rememb": 85, "remot": 71, "remov": [67, 84], "reparameter": [79, 85], "repeat": [71, 73, 78, 83, 84], "replac": [75, 83], "report": [1, 79], "repres": [1, 5, 6, 16, 43, 71, 72, 73, 75, 77, 78, 80, 84], "requier": [75, 83], "requir": [4, 27, 30, 32, 33, 34, 43, 72, 73, 77, 78, 83, 84, 85], "rescorla": [71, 74, 79], "research": [1, 77], "resembl": 77, "resolut": 1, "respect": [11, 71, 72, 76, 85], "respir": 81, "respond": 85, "respons": [2, 3, 4, 5, 6, 69, 70, 74, 76, 78, 79, 81, 84, 85, 86], "response_funct": [2, 3, 4, 6, 69, 74, 76, 77, 78, 79, 81, 84, 85], "response_function_input": [2, 3, 4, 5, 6, 30, 31, 32, 33, 34, 69, 77, 78, 79, 85], "response_function_paramet": [5, 6, 30, 31, 32, 33, 34, 69, 74, 77, 78, 79], "rest": [1, 73], "restrict": [72, 76], "result": [1, 2, 69, 72, 73, 74, 75, 76, 77, 78, 81, 83, 84, 85], "retriev": [72, 76, 81, 85], "return": [0, 4, 5, 6, 9, 10, 11, 13, 14, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 80, 81, 83, 84, 85], "revert": [43, 71], "review": [71, 84], "reward": [70, 77, 85, 86], "rf": [73, 78], "rhat": 79, "rho": [71, 80], "rho_1": 71, "rho_2": 80, "rho_3": 80, "rho_a": [43, 80], "rhoa": 84, "right": [11, 13, 43, 44, 51, 71, 73, 75, 77, 83], "rise": 76, "rl": 1, "robert": 86, "robust": [74, 76, 77, 78, 79, 81, 83, 85], "rocket": 78, "role": [0, 1, 76], "root": [0, 62, 66, 71, 72, 84], "row": 28, "rr": 81, "rr_": 81, "rule": [85, 86], "run": [70, 71, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85], "runtimewarn": 85, "rust": 69, "rw": 85, "rw_idata": 85, "rw_model": 85, "rw_updat": 85, "s11222": 86, "s_0": 77, "s_1": 77, "sa": [69, 85], "sake": 77, "salient": 76, "same": [1, 2, 3, 4, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 57, 58, 59, 60, 64, 71, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85], "sampl": [1, 2, 55, 56, 65, 70, 71, 72, 73, 77, 79, 81, 82, 83, 84], "samuel": 86, "sandra": [1, 86], "satellit": 86, "save": [44, 73, 78, 79, 85], "scalar": 73, "scale": [71, 73, 82, 84, 85], "scaling_factor": 73, "scall": 71, "scan": [17, 62, 83, 85], "scan_fn": 17, "scat": 73, "scat2": 73, "scatter": [72, 73, 77, 79, 83, 85], "scatterplot": 79, "scheme": [1, 72], "schrader": 69, "sch\u00f6bi": 69, "scienc": [1, 13], "scipi": [73, 82], "scope": 71, "scratch": 69, "sd": [2, 77, 85], "se": [78, 85], "seaborn": [71, 72, 73, 75, 78, 79, 80, 82, 83, 84, 85], "seagreen": 83, "seamless": 69, "search": 66, "second": [0, 1, 2, 5, 6, 10, 16, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 83, 84, 85], "section": [70, 71, 73, 74, 75, 76, 78, 84, 85], "see": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 84, 85], "seed": [71, 72, 73, 77, 78, 79, 80, 82, 83, 84], "seen": [71, 84, 85], "select": [77, 83, 84], "self": [75, 83, 85], "semi": 73, "send": [71, 72, 76], "sens": [1, 71, 75, 77], "sensori": [1, 69, 71, 84, 85, 86], "sensory_precis": 55, "separ": [73, 78, 79, 85], "septemb": 76, "sequenc": [17, 40, 58, 62, 65, 69, 71, 75, 77, 78, 83, 85], "sequenti": [74, 75, 76, 77, 78, 79, 81, 83, 85], "seri": [1, 2, 3, 4, 5, 6, 13, 32, 40, 58, 59, 68, 69, 71, 72, 73, 74, 75, 76, 78, 81, 84, 85, 86], "serotonin": 1, "session": 70, "set": [16, 24, 28, 29, 60, 63, 66, 69, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 85], "set_cent": 73, "set_minor_loc": 73, "set_offset": 73, "set_palett": 78, "set_titl": [73, 75, 79], "set_xdata": 73, "set_xlabel": [73, 79, 82], "set_ydata": 73, "set_ylabel": [73, 75, 79, 82, 83], "sever": [1, 76, 85], "sfreq": 81, "shad": 28, "shape": [0, 1, 3, 72, 73, 75, 78, 79, 80, 83, 84], "share": [72, 74], "sharei": 83, "sharex": [71, 73, 75, 83], "she": 77, "shoot": 76, "shortwav": 84, "should": [0, 2, 4, 5, 28, 29, 35, 43, 44, 48, 55, 58, 59, 60, 72, 73, 75, 77, 78, 83, 85], "show": [28, 29, 72, 76, 85], "show_heart_r": 81, "show_posterior": [28, 29, 80], "show_surpris": [28, 29, 80], "show_total_surpris": [29, 74, 76], "shown": [71, 73, 80], "side": [72, 77, 78], "sidecar": 85, "sigma": [55, 71, 72, 73, 78, 84], "sigma_1": [71, 84], "sigma_2": [71, 84], "sigma_mu_g0": 56, "sigma_pi_g0": 56, "sigma_temperatur": 78, "sigma_volatil": 78, "sigmoid": [71, 78, 79, 83, 85], "sigmoid_hgf": 77, "sigmoid_hgf_idata": 77, "sigmoid_inverse_temperatur": 79, "signal": [0, 70, 80], "sim": [2, 71, 78, 80, 84], "similar": [74, 76, 81, 83, 85], "similarli": [72, 76], "simpl": [2, 71, 72, 73, 77, 79, 83, 84, 85, 86], "simpler": [71, 72, 85], "simplest": [71, 77], "simplex": 1, "simpli": [0, 72, 73, 78, 79, 84, 85], "simplifi": [80, 84], "simpul": 71, "simul": [1, 55, 56, 71, 72, 73, 77, 80, 84, 85, 86], "simultan": 78, "sin": [72, 73, 80], "sinc": [71, 80], "singl": [6, 72, 73, 83, 85], "sinusoid": [72, 80], "sinusoid_linear_hgf": 80, "sinusoid_nonlinear_hgf": 80, "situat": [1, 71, 72, 75, 77, 78, 83], "size": [1, 5, 71, 72, 74, 76, 79, 82, 84], "skew": 75, "slightli": [76, 77, 85], "slope": [71, 80], "slow": [83, 85], "smaller": 79, "smooth": 70, "smoother": 73, "sn": [71, 72, 73, 75, 78, 79, 80, 82, 83, 84, 85], "snoma": 84, "snow": 84, "so": [72, 74, 76, 77, 80, 84, 85], "sofmax": [30, 31], "softmax": [5, 6, 69, 77, 83], "softwar": 69, "solar": 84, "sole": 83, "solid": 85, "solut": 73, "some": [37, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 84], "someth": [71, 72, 73, 77, 80, 82, 85], "sometim": [72, 76, 77, 84, 85], "sort": 73, "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69], "space": [65, 73, 76, 78, 80], "sparsiti": 77, "special": 83, "specif": [1, 43, 69, 70, 71, 72, 74, 75, 77, 78, 80, 83], "specifi": [2, 60, 71, 75, 80, 81, 83], "spike": 76, "spiral": 73, "spiral_data": 73, "split": [72, 77], "springer": [40, 58, 59, 86], "sqrt": [13, 28, 73, 82], "squar": [73, 78], "stabil": 1, "stabl": 76, "stable_conting": 83, "stack": 73, "staffel": [84, 86], "standard": [0, 28, 29, 36, 52, 55, 56, 65, 70, 71, 72, 73, 74, 75, 76, 77, 78, 82, 84, 85], "start": [2, 3, 4, 62, 65, 71, 73, 75, 77, 78, 83, 84, 85], "stat": [73, 82], "state": [1, 6, 18, 19, 20, 22, 32, 40, 41, 43, 44, 47, 48, 50, 51, 56, 58, 60, 61, 63, 64, 69, 70, 71, 72, 73, 74, 76, 77, 78, 83, 84, 85], "static": [45, 53, 57], "statist": [0, 13, 26, 28, 29, 40, 58, 59, 68, 71, 72, 77, 79, 82, 86], "statproofbook": 11, "std": [80, 82], "steep": 80, "steeper": 80, "stefan": 86, "step": [1, 5, 6, 17, 36, 37, 40, 44, 62, 65, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 83, 84, 85], "stephan": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 86], "still": [75, 83], "stim_1": 85, "stim_2": 85, "stimuli": [77, 78, 85], "stimulu": [77, 78, 85], "stochast": [71, 73, 75, 80, 84], "storag": 84, "store": [44, 49, 69, 72, 77, 78], "str": [2, 3, 4, 16, 28, 40, 45, 53, 54, 57, 58, 59, 61, 62, 65], "straight": 71, "straightforward": [71, 73, 83], "straigthforwar": 84, "strenght": 23, "strength": [16, 35, 42, 43, 44, 48, 49, 60, 71, 74, 80], "string": 72, "structur": [0, 16, 17, 28, 29, 35, 42, 48, 49, 62, 65, 66, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 84, 85], "student": 73, "studi": [1, 70, 76, 78], "sub": [0, 72, 74], "subject": [1, 85], "subplot": [71, 73, 75, 79, 80, 82, 83, 85], "subtl": 85, "success": 79, "suffici": [0, 13, 26, 28, 29, 40, 58, 59, 68, 71, 72, 77, 82, 86], "sufficient_statistics_from_observ": 73, "sufficient_statistics_from_paramet": 73, "sufficient_stats_fn": [58, 59], "suggest": [73, 85], "suitabl": 83, "sum": [5, 29, 34, 43, 44, 69, 74, 75, 76, 77, 78, 81, 83, 84, 85], "sum_": [11, 44, 75, 77], "summari": [2, 74, 76, 77, 79, 81, 85], "summer": 84, "support": [5, 69, 71, 72, 73], "suppos": 80, "sure": [75, 77, 83, 85], "surfac": 84, "surpris": [0, 2, 3, 4, 5, 6, 9, 10, 14, 28, 29, 30, 31, 32, 33, 34, 68, 69, 72, 75, 81, 83, 84, 85], "surprise_fn": 75, "suspect": 76, "swgdn": 84, "swiss": 76, "switch": [73, 74, 85], "swtdn": 84, "sy": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "systol": 81, "t": [1, 31, 36, 37, 42, 43, 44, 46, 49, 50, 51, 59, 69, 71, 72, 73, 74, 75, 77, 78, 80, 83, 84, 85], "t2m": 84, "tailor": [74, 75], "take": [0, 1, 71, 74, 77, 78, 84, 85], "tapa": 69, "target": [62, 69, 73, 84], "target_accept": [79, 85], "task": [69, 70, 72, 74, 77, 78, 81, 85], "techniqu": 79, "tediou": 76, "tem": 84, "temp": 78, "temperatur": [5, 6, 31, 69, 77, 78, 79, 83, 84], "temporari": 54, "ten": 86, "tensor": [74, 75, 76, 77, 78, 79, 81, 83, 85], "term": [1, 44, 71, 72, 77, 80, 86], "terminologi": [75, 78], "test": [78, 79], "text": [9, 77, 80], "th": 78, "than": [16, 37, 71, 75, 76, 78, 79, 80], "thank": [78, 85], "thecomput": 70, "thei": [0, 69, 72, 74, 75, 76, 77, 78, 79, 85], "them": [71, 73, 77, 83, 84], "theoret": [70, 84], "theori": [1, 71, 85], "therefor": [32, 40, 71, 72, 73, 75, 76, 77, 78, 80, 83, 84, 85], "thestrup": [1, 86], "theta": [72, 73, 80], "theta_": 72, "theta_1": [72, 80], "theta_2": 80, "thi": [0, 1, 2, 4, 5, 6, 13, 16, 17, 27, 28, 29, 32, 35, 37, 40, 44, 54, 58, 59, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "thing": [75, 78, 84], "think": [71, 77], "third": [1, 5, 6, 72, 74, 76], "those": [69, 72, 74, 77, 78], "three": [0, 5, 6, 16, 28, 29, 71, 72, 75, 82, 83], "three_level_hgf": [76, 81], "three_level_hgf_idata": [74, 76], "three_level_trajectori": 85, "three_levels_binary_hgf": [74, 85], "three_levels_continuous_hgf": 76, "three_levels_continuous_hgf_bi": 76, "three_levels_hgf": [29, 74], "three_levels_idata": 85, "threshold": 80, "through": [0, 69, 70, 71, 72, 77, 78, 80, 84, 85], "thu": [1, 84], "ticker": 73, "tight": 76, "tight_layout": [73, 76], "tile": [71, 73, 83, 84], "tim": 86, "time": [1, 2, 3, 4, 5, 6, 13, 30, 31, 32, 33, 34, 40, 41, 43, 44, 58, 59, 62, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 84, 85, 86], "time_step": [2, 3, 4, 5, 6, 41, 77, 83], "timeseri": [2, 28, 29, 76, 84], "timestep": 80, "titl": [1, 71, 73, 75, 78, 80, 82, 85], "tmp": 76, "to_numpi": [84, 85], "to_panda": [74, 76, 77], "toa": 84, "togeth": [29, 74, 76, 77, 85], "tolist": 79, "tomkin": 81, "tonic": [2, 5, 6, 16, 43, 44, 71, 76, 78, 79, 80, 82, 83, 84, 85], "tonic_drift": [16, 28, 29, 74, 80, 81], "tonic_drift_1": [5, 6], "tonic_drift_2": [5, 6], "tonic_drift_3": [5, 6], "tonic_volatil": [16, 28, 29, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "tonic_volatility_1": [5, 6, 76, 81], "tonic_volatility_2": [2, 5, 6, 74, 75, 76, 77, 78, 79, 81, 85], "tonic_volatility_3": [5, 6, 74, 76], "too": 83, "took": [74, 76, 77, 78, 79, 81, 83, 85], "tool": 78, "toolbox": [69, 71, 73, 76, 77], "top": [0, 28, 29, 69, 71, 73, 74, 76, 77, 82, 84], "total": [43, 44, 71, 74, 76, 77, 78, 79, 80, 81, 83, 84, 85], "total_gaussian_surpris": [2, 81], "total_surpris": 77, "toussaint": 69, "toward": [83, 85], "trace": 80, "track": [40, 71, 72, 73, 74, 77, 82, 84, 85], "tradition": 77, "trajectori": [0, 6, 26, 28, 29, 68, 69, 73, 77, 78, 79, 81, 82, 83, 84], "trajectories_df": 68, "transform": [23, 71, 72, 74, 77, 78, 80, 85], "transit": [63, 70, 73], "translat": 69, "transmiss": 84, "transpar": 72, "treat": 78, "tree": 72, "tree_util": [75, 83], "tri": [72, 74, 77, 85], "trial": [1, 71, 76, 77, 83, 85], "trigger": [0, 69, 71, 84], "tristan": 80, "trivial": 77, "true": [9, 14, 28, 29, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 85], "try": [76, 77, 80, 82, 83, 84, 85], "tune": [2, 74, 76, 77, 78, 79, 81, 83, 85], "tupl": [2, 3, 4, 17, 20, 22, 23, 24, 28, 29, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 72, 77, 80], "turn": [70, 71, 84], "tutori": [69, 71, 73, 74, 77, 78, 79, 80, 83, 84, 85], "two": [0, 1, 5, 6, 11, 16, 28, 29, 36, 37, 62, 69, 71, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84], "two_armed_bandit_hgf": 83, "two_armed_bandit_missing_inputs_hgf": 83, "two_bandits_logp": 83, "two_level_hgf": 76, "two_level_hgf_idata": [74, 76, 78, 79, 85], "two_level_trajectori": 85, "two_levels_binary_hgf": [74, 78, 79, 85], "two_levels_continuous_hgf": [76, 84], "two_levels_hgf": [74, 85], "two_levels_idata": 85, "type": [2, 3, 4, 5, 16, 17, 30, 31, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 53, 54, 56, 57, 58, 59, 60, 61, 64, 65, 72, 75, 77, 78, 83, 85], "typic": 72, "u": [29, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "u1": 80, "u2": 80, "u_0": 72, "u_0_prob": 72, "u_1": [71, 72, 80], "u_1_prob": 72, "u_2": [71, 80], "u_loss_arm1": 83, "u_loss_arm2": 83, "u_win_arm1": 83, "u_win_arm2": 83, "ucl": 11, "uk": 11, "uncertain": [1, 72], "uncertainti": [1, 28, 29, 69, 70, 71, 73, 83, 84, 85, 86], "under": [1, 6, 9, 10, 14, 30, 31, 37, 52, 54, 56, 69, 71, 74, 76, 77, 78, 85, 86], "undergo": [77, 78], "underli": [10, 72, 74, 75, 76, 77, 79, 80], "underpin": [71, 73], "understand": [1, 71, 80, 85], "underw": 77, "unexpect": [73, 74, 76], "uniform": [74, 79, 85], "union": [30, 31, 56, 60], "uniqu": [71, 72, 85], "unit": [2, 3, 4, 62, 78], "univari": [8, 58, 59, 73], "univariate_hgf": 73, "univers": [11, 80, 86], "unlik": [71, 76], "unnecessari": 73, "unobserv": 83, "until": [75, 80], "up": [28, 29, 69, 71, 76, 84], "updat": [1, 13, 17, 25, 61, 62, 63, 65, 67, 69, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85], "update_binary_input_par": 42, "update_continuous_input_par": 42, "update_fn": 72, "update_fn1": 72, "update_fn2": 72, "update_sequ": [17, 62, 65, 72, 83], "update_typ": 65, "upon": 71, "upper": [71, 72, 79, 83], "upper_bound": 15, "url": [1, 11, 86], "us": [0, 1, 2, 3, 4, 5, 6, 16, 25, 27, 28, 35, 36, 37, 40, 43, 44, 56, 69, 71, 72, 78, 79, 80, 81, 82, 83, 84, 85, 86], "usd": [28, 29], "user": [71, 77], "userwarn": 76, "usual": [0, 40, 58, 62, 71, 72, 79, 82], "util": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "v": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "valid": [4, 13, 32, 72, 74, 76, 78, 85, 86], "valu": [0, 2, 5, 6, 10, 16, 17, 28, 29, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 64, 69, 70, 73, 74, 76, 77, 78, 79, 81, 82, 83, 85], "valuat": 76, "value_children": [18, 20, 22, 23, 24, 69, 72, 76, 80, 82, 83, 84, 85], "value_coupling_children": [16, 42, 49], "value_coupling_par": [16, 42, 49], "value_par": [18, 20, 23, 24, 72], "vape": 71, "var_nam": [2, 74, 77, 78, 79, 85], "vari": [70, 71, 73, 77, 78, 80], "variabl": [1, 13, 43, 62, 67, 69, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85], "varianc": [5, 6, 16, 69, 70, 71, 72, 73, 76, 84], "variat": [0, 1, 72, 73], "varieti": 72, "variou": [1, 72, 73, 84], "vartheta": 73, "vector": [2, 3, 4, 5, 16, 40, 56, 58, 73, 75, 77, 78, 79, 83, 85], "vectorized_logp": 5, "vehtari": [78, 86], "verbelen": 86, "veri": [1, 71, 76, 78, 81, 84], "versatil": 84, "version": [1, 17, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "via": [71, 72], "view": 83, "visibl": 76, "visual": [0, 27, 28, 29, 69, 82, 84, 85], "vizualis": 73, "vjp": 75, "vjp_custom_op": 75, "vjp_custom_op_jax": 75, "vjp_fn": 75, "vjpcustomop": 75, "vol": 69, "volatil": [0, 1, 2, 5, 6, 16, 17, 28, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 53, 54, 57, 58, 59, 60, 61, 64, 65, 69, 70, 73, 74, 76, 77, 78, 79, 80, 82, 83, 85], "volatile_conting": 83, "volatility_children": [18, 20, 23, 24, 72, 76, 82, 84], "volatility_coupl": [16, 28, 29, 35, 48, 74, 81], "volatility_coupling_1": [5, 6], "volatility_coupling_2": [5, 6], "volatility_coupling_children": [16, 42, 49], "volatility_coupling_par": [16, 42, 49], "volatility_par": [18, 20, 23, 24, 72], "volum": 1, "vopa": 44, "vope": 71, "vstack": 75, "w": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "w_a": 83, "w_b": 83, "wa": [40, 65, 69, 72, 74, 75, 76, 77, 80, 83, 85], "waad": [1, 36, 37, 42, 43, 44, 46, 49, 50, 51, 69, 86], "wagenmak": [78, 86], "wagner": [71, 74, 79], "wai": [1, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 84, 85], "waic": 86, "wait": 40, "walk": [1, 5, 6, 16, 43, 80, 83], "want": [1, 2, 61, 72, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85], "warmup": 2, "warn": [74, 75, 76, 77, 78, 79, 81, 83, 85], "watermark": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "wave": [72, 80], "we": [0, 1, 2, 40, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "weak_typ": [9, 14], "weber": [0, 1, 13, 36, 37, 40, 42, 43, 44, 46, 49, 50, 51, 58, 59, 69, 71, 72, 73, 84, 86], "weigh": [73, 84], "weight": [1, 56, 69, 71, 72, 73, 85], "weigth": 56, "well": [1, 62, 72, 73, 79, 84, 85], "were": [71, 73, 74, 77, 78, 79, 83, 85], "what": [40, 72, 75, 76, 77, 80, 83, 84, 85], "when": [2, 4, 5, 6, 32, 43, 54, 58, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 84, 85], "where": [0, 3, 4, 5, 6, 14, 28, 29, 31, 40, 43, 44, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84], "wherea": 81, "whether": 28, "which": [1, 5, 6, 13, 43, 65, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 84, 85], "while": [71, 72, 73, 77, 78, 80, 81, 83, 84, 85], "whithout": 73, "whole": [71, 73, 83], "wide": [16, 74], "width": [28, 29, 73], "wiki": [7, 8], "wikipedia": [7, 8], "william": 11, "wilson": [79, 86], "win": 83, "win_arm1": 83, "win_arm2": 83, "wind": 86, "wine": 83, "wishart": 11, "within": 1, "without": [1, 43, 58, 64, 70, 72, 77, 78, 80], "won": 74, "word": [72, 74, 76, 85], "work": [27, 70, 75, 77, 78, 83, 85], "workflow": [78, 85], "workshop": 84, "world": [71, 73, 77, 85], "worri": [74, 76], "worth": 78, "would": [74, 76, 78, 80, 83, 84], "wpenni": 11, "wrap": [0, 74, 75, 76, 83], "write": [75, 77, 80, 84, 85], "written": 73, "www": [1, 11, 86], "x": [9, 12, 13, 14, 15, 59, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84], "x1": [71, 80], "x2": [71, 80], "x3": 80, "x64": 85, "x_": [71, 74, 84], "x_0": [6, 76], "x_0_expected_mean": 77, "x_0_expected_precis": 77, "x_0_mean": 77, "x_0_precis": 77, "x_0_surpris": [74, 76, 77], "x_1": [6, 71, 73, 80, 84], "x_1_1": 71, "x_1_2": 71, "x_1_3": 71, "x_1_expected_mean": 77, "x_1_expected_precis": 77, "x_1_mean": 77, "x_1_precis": 77, "x_1_surpris": [74, 76, 77], "x_2": [6, 71, 73, 80, 84], "x_2_1": 71, "x_2_2": 71, "x_2_3": 71, "x_2_surpris": [74, 76], "x_3": [6, 80], "x_b": 43, "x_i": 73, "xaxi": 73, "xflr6": 27, "xi": [13, 59, 72, 73, 75], "xi_": [13, 72, 73], "xi_1": [72, 73], "xi_2": 73, "xi_k": 72, "xi_x": [13, 73], "xlabel": [71, 73, 75, 77, 80, 84, 85], "xlim": 73, "xy": 73, "y": [13, 69, 73, 77, 79, 83, 85], "y1": 75, "y2": 75, "yaxi": 73, "ye": 80, "year": [1, 84, 86], "yet": 83, "ylabel": [71, 73, 75, 80, 84, 85], "ylim": 73, "you": [1, 61, 69, 70, 72, 73, 75, 77, 80, 83, 84, 85], "your": [1, 84, 85], "z": [73, 78], "z_": 78, "zero": 80, "zip": [71, 73, 79, 82, 83, 85], "zoom": 80, "zorder": [72, 75, 79], "zurich": 70, "\u03c9_2": 2}, "titles": ["API", "How to cite?", "pyhgf.distribution.HGFDistribution", "pyhgf.distribution.HGFLogpGradOp", "pyhgf.distribution.HGFPointwise", "pyhgf.distribution.hgf_logp", "pyhgf.distribution.logp", "pyhgf.math.MultivariateNormal", "pyhgf.math.Normal", "pyhgf.math.binary_surprise", "pyhgf.math.binary_surprise_finite_precision", "pyhgf.math.dirichlet_kullback_leibler", "pyhgf.math.gaussian_density", "pyhgf.math.gaussian_predictive_distribution", "pyhgf.math.gaussian_surprise", "pyhgf.math.sigmoid", "pyhgf.model.HGF", "pyhgf.model.Network", "pyhgf.model.add_binary_state", "pyhgf.model.add_categorical_state", "pyhgf.model.add_continuous_state", "pyhgf.model.add_dp_state", "pyhgf.model.add_ef_state", "pyhgf.model.get_couplings", "pyhgf.model.insert_nodes", "pyhgf.model.update_parameters", "pyhgf.plots.plot_correlations", "pyhgf.plots.plot_network", "pyhgf.plots.plot_nodes", "pyhgf.plots.plot_trajectories", "pyhgf.response.binary_softmax", "pyhgf.response.binary_softmax_inverse_temperature", "pyhgf.response.first_level_binary_surprise", "pyhgf.response.first_level_gaussian_surprise", "pyhgf.response.total_gaussian_surprise", "pyhgf.updates.posterior.categorical.categorical_state_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "pyhgf.updates.posterior.exponential.posterior_update_exponential_family_dynamic", "pyhgf.updates.prediction.binary.binary_state_node_prediction", "pyhgf.updates.prediction.continuous.continuous_node_prediction", "pyhgf.updates.prediction.continuous.predict_mean", "pyhgf.updates.prediction.continuous.predict_precision", "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "pyhgf.updates.prediction_error.dirichlet.create_cluster", "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "pyhgf.updates.prediction_error.dirichlet.get_candidate", "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "pyhgf.updates.prediction_error.dirichlet.update_cluster", "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_dynamic", "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family_fixed", "pyhgf.utils.add_edges", "pyhgf.utils.add_parent", "pyhgf.utils.beliefs_propagation", "pyhgf.utils.fill_categorical_state_node", "pyhgf.utils.get_input_idxs", "pyhgf.utils.get_update_sequence", "pyhgf.utils.list_branches", "pyhgf.utils.remove_node", "pyhgf.utils.to_pandas", "PyHGF: A Neural Network Library for Predictive Coding", "Learn", "Introduction to the Generalised Hierarchical Gaussian Filter", "Creating and manipulating networks of probabilistic nodes", "Generalised Bayesian Filtering of exponential family distributions", "The binary Hierarchical Gaussian Filter", "The categorical Hierarchical Gaussian Filter", "The continuous Hierarchical Gaussian Filter", "Using custom response models", "Hierarchical Bayesian modelling with probabilistic neural networks", "Recovering computational parameters from observed behaviours", "Non-linear value coupling between continuous state nodes", "Example 1: Bayesian filtering of cardiac volatility", "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions", "Example 3: A multi-armed bandit task with independent rewards and punishments", "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter", "Zurich CPC II: Application to reinforcement learning", "References"], "titleterms": {"1": [81, 84], "2": [82, 84], "3": [83, 84], "4": 84, "5": 84, "7": 85, "8": 85, "A": [69, 83], "The": [69, 70, 71, 72, 74, 75, 76, 84, 85], "acknowledg": 69, "activ": 80, "ad": 71, "adapt": 73, "add": [74, 76], "add_binary_st": 18, "add_categorical_st": 19, "add_continuous_st": 20, "add_dp_stat": 21, "add_edg": 60, "add_ef_st": 22, "add_par": 61, "api": 0, "applic": 85, "arm": [79, 83], "ascend": 72, "assign": 72, "attribut": 72, "autoregress": 71, "bandit": [79, 83], "bayesian": [73, 78, 81, 83], "behavior": 77, "behaviour": [79, 85], "belief": [71, 83, 85], "beliefs_propag": 62, "between": [80, 84], "bias": 85, "binari": [0, 41, 46, 47, 72, 74, 77, 85], "binary_finite_state_node_prediction_error": 46, "binary_softmax": 30, "binary_softmax_inverse_temperatur": 31, "binary_state_node_predict": 41, "binary_state_node_prediction_error": 47, "binary_surpris": 9, "binary_surprise_finite_precis": 10, "cardiac": 81, "case": [70, 72], "categor": [0, 35, 48, 75], "categorical_state_prediction_error": 48, "categorical_state_upd": 35, "cite": 1, "clusters_likelihood": 52, "code": 69, "collect": 73, "comparison": [78, 85], "comput": [78, 79], "configur": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "content": 0, "continu": [0, 36, 37, 38, 39, 42, 43, 44, 49, 50, 51, 72, 76, 80], "continuous_node_posterior_upd": 36, "continuous_node_posterior_update_ehgf": 37, "continuous_node_predict": 42, "continuous_node_prediction_error": 49, "continuous_node_value_prediction_error": 50, "continuous_node_volatility_prediction_error": 51, "correl": 76, "coupl": [71, 72, 80, 84], "cpc": [84, 85], "creat": [72, 74, 75, 76, 77], "create_clust": 53, "custom": [72, 77], "data": [74, 76], "dataset": [75, 78, 83], "decis": [77, 83], "deriv": 81, "descend": 72, "detail": 72, "differ": 85, "dirichlet": [0, 45, 52, 53, 54, 55, 56, 57], "dirichlet_kullback_leibl": 11, "dirichlet_node_predict": 45, "dirichlet_node_prediction_error": 54, "distribut": [0, 2, 3, 4, 5, 6, 73, 78, 82], "doe": 69, "drift": 71, "dynam": [71, 72, 73], "edg": 72, "error": [0, 71], "estim": 82, "exampl": [81, 82, 83], "exercis": [70, 84, 85], "exponenti": [0, 40, 58, 59, 73], "famili": [0, 73], "fill_categorical_state_nod": 63, "filter": [69, 70, 71, 73, 74, 75, 76, 81, 84], "first_level_binary_surpris": 32, "first_level_gaussian_surpris": 33, "fit": [69, 74, 75, 76, 85], "fix": [73, 74, 76], "forward": 75, "frequenc": 80, "from": [77, 79, 83], "function": [0, 72, 77, 80], "gaussian": [69, 70, 71, 73, 74, 75, 76, 82, 84], "gaussian_dens": 12, "gaussian_predictive_distribut": 13, "gaussian_surpris": 14, "gener": [69, 71, 84], "generalis": [71, 73, 84], "get": 69, "get_candid": 55, "get_coupl": 23, "get_input_idx": 64, "get_update_sequ": 65, "glossari": [71, 77], "go": 85, "graph": 78, "group": 78, "heart": 81, "hgf": [16, 74, 76, 77, 85], "hgf_logp": 5, "hgfdistribut": 2, "hgflogpgradop": 3, "hgfpointwis": 4, "hierarch": [69, 70, 71, 73, 74, 75, 76, 78, 84], "how": [1, 69], "i": 84, "ii": 85, "implement": 72, "import": 74, "independ": 83, "infer": [75, 78, 79, 83], "input": 72, "insert_nod": 24, "instal": 69, "instantan": 81, "introduct": [71, 84], "invers": 84, "known": 82, "kown": 82, "learn": [70, 74, 76, 85], "level": [74, 76, 78, 85], "librari": 69, "likely_cluster_propos": 56, "linear": 80, "list_branch": 66, "load": 81, "logp": 6, "manipul": 72, "math": [0, 7, 8, 9, 10, 11, 12, 13, 14, 15], "mcmc": [74, 75, 76], "mean": 82, "miss": 72, "model": [0, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 69, 71, 74, 75, 76, 77, 78, 81, 84, 85], "modifi": 72, "multi": 83, "multivari": [72, 73], "multivariatenorm": 7, "network": [17, 69, 71, 72, 75, 78], "neural": [69, 78], "new": 77, "next": 85, "node": [0, 71, 72, 75, 80, 84], "non": [73, 80], "normal": 8, "nu": 73, "observ": [77, 79], "one": 79, "optim": 85, "paramet": [74, 76, 77, 79, 83, 85], "particip": 83, "physiolog": 81, "plot": [0, 26, 27, 28, 29, 74, 76, 78, 81], "plot_correl": 26, "plot_network": 27, "plot_nod": 28, "plot_trajectori": 29, "posterior": [0, 35, 36, 37, 38, 39, 40, 78, 85], "posterior_update_exponential_family_dynam": 40, "posterior_update_mean_continuous_nod": 38, "posterior_update_precision_continuous_nod": 39, "practic": 84, "precis": 82, "predict": [0, 41, 42, 43, 44, 45, 69, 71, 80, 85], "predict_mean": 43, "predict_precis": 44, "prediction_error": [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59], "prediction_error_update_exponential_family_dynam": 58, "prediction_error_update_exponential_family_fix": 59, "preprocess": 81, "probabilist": [72, 75, 78, 84], "process": [0, 71], "propag": 71, "punish": 83, "pyhgf": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69], "random": [71, 84, 85], "rate": 81, "real": 83, "record": 81, "recov": [77, 79], "recoveri": [79, 83], "rectifi": 80, "refer": [69, 86], "reinforc": 85, "relu": 80, "remove_nod": 67, "rescorla": 85, "respons": [0, 30, 31, 32, 33, 34, 77, 83], "reward": 83, "rl": 85, "rule": [77, 83], "sampl": [74, 75, 76, 78, 85], "sequenc": 72, "sigmoid": 15, "signal": 81, "simul": [75, 78, 79, 83], "solut": [84, 85], "start": 69, "state": [0, 75, 80], "static": 72, "stationari": 73, "statist": 73, "step": 0, "structur": 83, "suffici": 73, "surpris": [74, 76, 77], "system": [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], "tabl": 0, "task": [79, 83], "theori": [70, 72, 73], "three": [74, 76, 85], "through": 73, "time": [72, 82, 83], "to_panda": 68, "total_gaussian_surpris": 34, "track": 80, "trajectori": [74, 76, 85], "transit": 75, "tutori": 70, "two": [74, 76, 85], "unit": 80, "unknown": 82, "unkown": 82, "unobserv": 72, "updat": [0, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 71, 72, 83], "update_clust": 57, "update_paramet": 25, "us": [70, 73, 74, 75, 76, 77], "util": [0, 60, 61, 62, 63, 64, 65, 66, 67, 68], "valu": [71, 72, 80, 84], "vari": [72, 82], "visual": [72, 74, 76, 78, 79], "volatil": [71, 72, 81, 84], "wagner": 85, "walk": [71, 84], "weather": 84, "where": 85, "work": [69, 72], "world": 84, "zurich": [84, 85]}}) \ No newline at end of file