Skip to content

Latest commit

 

History

History
90 lines (81 loc) · 5.03 KB

README.md

File metadata and controls

90 lines (81 loc) · 5.03 KB

Detecting Road Damage

Setup

Python Setup

pip install -r requirements.txt

Filestructure

Place the RDDDataset within the data folder. The resulting Strucutre should look like this

TDT4265_project
├── data
│   ├── rdd2022
│   │   ├── RDD2022
│   │   |   ├── Norway
│   │   |   |    ├── train
...
├── yolo

About the Model

This Implementation is centered arount the YOLOv8 Model by ultralytics. The architecture is as follows:

YOLOv8-P5 model structure
from n params module arguments
0 -1 1 2320 ultralytics.nn.modules.Conv [3, 80, 3, 2]
1 -1 1 115520 ultralytics.nn.modules.Conv [80, 160, 3, 2]
2 -1 3 436800 ultralytics.nn.modules.C2f [160, 160, 3, True]
3 -1 1 461440 ultralytics.nn.modules.Conv [160, 320, 3, 2]
4 -1 6 3281920 ultralytics.nn.modules.C2f [320, 320, 6, True]
5 -1 1 1844480 ultralytics.nn.modules.Conv [320, 640, 3, 2]
6 -1 6 13117440 ultralytics.nn.modules.C2f [640, 640, 6, True]
7 -1 1 3687680 ultralytics.nn.modules.Conv [640, 640, 3, 2]
8 -1 3 6969600 ultralytics.nn.modules.C2f [640, 640, 3, True]
9 -1 1 1025920 ultralytics.nn.modules.SPPF [640, 640, 5]
10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
11 [-1, 6] 1 0 ultralytics.nn.modules.Concat [1]
12 -1 3 7379200 ultralytics.nn.modules.C2f [1280, 640, 3]
13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
14 [-1, 4] 1 0 ultralytics.nn.modules.Concat [1]
15 -1 3 1948800 ultralytics.nn.modules.C2f [960, 320, 3]
16 -1 1 922240 ultralytics.nn.modules.Conv [320, 320, 3, 2]
17 [-1, 12] 1 0 ultralytics.nn.modules.Concat [1]
18 -1 3 7174400 ultralytics.nn.modules.C2f [960, 640, 3]
19 -1 1 3687680 ultralytics.nn.modules.Conv [640, 640, 3, 2]
20 [-1, 9] 1 0 ultralytics.nn.modules.Concat [1]
21 -1 3 7379200 ultralytics.nn.modules.C2f [1280, 640, 3]
22 [15, 18, 21] 1 8721820 ultralytics.nn.modules.Detect [4, [320, 640, 640]]

How to Train

Pretraining

python yolo/pretrain.py this uses the hyperparameters at yolo/prehyperparams.yaml

Training on Norway Dataset

python yolo/train.py

this uses the hyperparameters at yolo/hyperparams.yaml. The model specified in this file should be replaced by the path to the run from the model obtained by the pretrain step.

How to Predict

The prediction API with image fragmentation and model ensembling can be imported from yolo/predict:

from predict import get_prediction

model_files = [...]
models =  [YOLO(model_file, task="detect")  for model_file in model_files]
img = cv2.load('path/to/img.jpeg')
boxes =  get_prediction(
				models,
				img,
				use_fragmentation=True,
				fragment_size=640,
				intersection_th=0.3,
				)

Image Fragmentation Approach

We utalize an image fragmentation approach to maximize the information passed to the model. This means, that multiple prediction from different fragments have to be merged into a global prediction. To do so, we iterate over all box combinations and check, whether they "are connected" - if so, they are merged. The current rule on determining connections is based on the relative instersection area for each box. Testing showed, that a threshold of 30% provided the best results. --> This means if any of the boxes overlapps mor than 30% of its area with the other box, they are merged.

This is still a very rudamentary approach with a lot of room for improvement.